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Supramolecular peptide-based materials have great potential for
revolutionizing fields like nanotechnology and medicine. However,
deciphering theintricate sequence-to-assembly pathway, essential for their

real-life applications, remains a challenging endeavour. Their discovery relies
primarily on empirical approaches that require substantial financial resources,
impeding their disruptive potential. Consequently, despite the multitude of
characterized self-assembling peptides and their demonstrated advantages,
only afew peptide materials have found their way to the market. Machine
learning trained on experimentally verified data presents a promising tool

for quickly identifying sequences with a high propensity to self-assemble,
thereby focusing resource expenditures on the most promising candidates.
Here weintroduce aframework thatimplements an accurate classifierina
metaheuristic-based generative model to navigate the search through the
peptide sequence space of challenging size. For this purpose, we trained five
recurrent neural networks among which the hybrid model that uses sequential
information on aggregation propensity and specific physicochemical
properties achieved asuperior performance with 81.9% accuracy and 0.865
F1score.Molecular dynamics simulations and experimental validation have
confirmed the generative model to be 80-95% accurate in the discovery of
self-assembling peptides, outperforming the current state-of-the-art models.
The proposed modular framework efficiently complements human intuitionin
the exploration of self-assembling peptides and presents animportant stepin
the development of intelligent laboratories for accelerated material discovery.

Molecular self-assembly (SA) driven by weak, non-covalentinteractions
represents one of the fundamental chemical processes observed in
living organisms'?. Peptides, composed of 20 gene-encoded amino
acids, serve as a versatile toolbox for obtaining supramolecular materi-
als with rich chemical and structural properties®. It is no surprise that
the organization of peptidic building blocks into three-dimensional
structures gives rise to materials that exhibit remarkable complexi-
ties and emerging functionalities, including catalysis and molecular
recognition*®. As a result, the rational and computational design of

peptide-based materials, accompanied by extensive experimental
validations, has led to the establishment of relevant and applicable
design principles, enabling substantial progress inthe development of
supramolecular materials for awide range of applications®°. However,
understanding of the sequence-to-structure and functionrelationships
of peptides still remains beyond our comprehension.

Although expensive and time-consuming, the experimental
discovery of new self-assembling peptides remains the prevailing
approach™. However, this nondeterministic polynomial time (NP)-hard
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shorter sequences to amaximum length of 24 residues to expedite training. The
models were optimized and evaluated using the nested fivefold cross-validation
sampling technique before yielding the final model ready for exploitation. With
the aim of discovering sequences with high SA propensity, the hybrid AP-SP
model was used as aguideline in a genetic-algorithm-based generative model.

discovery process advocates alternative methods for the efficient navi-
gation of the chemical space that grows exponentially with each amino
acidadded to the sequence™. Furthermore, laboratory investigations of
supramolecular peptide nanostructures, including synthesis, purifica-
tionand characterization, can last for weeks and require highly skilled
experts and sophisticated instrumentation'>". On the contrary, the
intractability of an exhaustive examination of the entire search space
when considering peptides longer than three amino acids' and the
sparseness of useful molecules in such spaces'®led to design rules for
peptide SA, namely, patterning strategies manipulating hydrophobic-
hydrophilic balance' and molecular templating®. Such procedures
tend to constrain peptide design and reduce the number of peptides
that reside in the available search space to a more manageable level.
Nevertheless, they introduce an unwanted bias towards specific regions
ofthe search space, thereby disregarding potentially promising areas
and limiting the discovery of novel sequences.

Molecular dynamics (MD) simulations contributed to consider-
ablyreducing the time required to characterize individual compounds
and increased the available screening throughput® ., However, they
tend tointroduce errors into the results, the extent of which partially
depends on the simulation setup details (for example, coarse-grained
(CG) MD*, simulation time and system size”). Nevertheless, MD has
beensuccessfully applied to the estimation of aggregation propensity
(AP) asaprecursor stage of peptide SA for dipeptides” and tripeptides’;
however, extending thisapproach totetrapeptides and beyond remains
challenging due to high computational costs'**%,

Machine learning (ML) has emerged as an efficient alternative
to MD for the in silico screening and optimization of therapeutic
peptides®**'. ML algorithms run faster than MD simulations and can
achieve acceptable accuracy with large datasets and the right choice
of architecture'®****>. However, they are mostly unexplored for the
prediction of peptide SA propensity due to the scarcity andimbalance
of data**. Recently, ML-based sequence preselections based on sup-
port vector machine and random forest (RF) models were applied to
guide the search for self-assembling and hydrogel-forming peptides,
demonstrating advantages over human experts'®*. This approach pro-
duced higher average AP scores compared with an exhaustive search,
and its scalability made it applicable to search spaces comprising

longer sequences, including octapeptides and proteins*. Althougha
shift towards using artificial intelligence (Al) models for rapid screen-
ing is evident***%, many studies still rely on MD for the final AP score
calculations. As we progress towards exploring peptide spaces of
increasing size, MD simulations ought to be complemented with ML
to facilitate fast and unbiased exploration of the peptide space**°.
In arecent study, a least absolute shrinkage and selection operator
regression model trained with 163 sequences was used to search for
de novo self-assembling peptides for viral gene delivery®'. A subset of
16 promising hexapeptides showed alow accuracy of 25% when tested
experimentally, which was improved to 50% after filtering the subset
according to AP. Therefore, better models and more sophisticated
representation schemes are needed to overcome the issue of complex
multiparameter and multiscale dependencies therein.

Recurrent neural networks (RNNs) are particularly effective in
processing data sequences due to their ability to capture sequential
dependencies, distinguishing them from other ML models and network
architectures® . Consequently, they have found widespread applica-
tionin sequence-to-functioninference, such as sentiment analysis**~’—
a task highly similar to the prediction of peptide activity. Therefore,
RNNs can exhibit performance superior to those of ML techniques such
as RF, support vector machine and non-RNNs to assess SA propensity
by modelling context-aware sequential relationships between peptide
constituents®**. In this paper, we introduce an RNN-based approach
to assess the SA potential of unclassified peptides using irregularly
sampled features of unequal length, based on AP scores of amino
acids, dipeptides and tripeptides**”“° as predictor variables for any
given peptide of interest (Fig. 1). Furthermore, the RNN classifier is
used as afitness functionin asearch-based genetic algorithmtoforma
generative model for the discovery of sequences with a high propensity
towards SA. This model complements human intuition in an attempt
to identify new peptides with high SA propensity, based on unbiased
sequence-space exploration aided by ML.

Results and discussion

Thetask of predicting the SA propensity in peptides of arbitrary length
was approached by asupervised learning classifier with sequence-based
inputand RNNarchitecture (Fig.1). RNNs are deep learning algorithms
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and hyperparameter optimization. a, Distribution of peptide lengths within
the dataset with the indicated numbers of SA (blue) and NSA (red) instances.

b, Schematic of the sliding window preprocessing procedure identifying
individual amino acids, dipeptides and tripeptides within the sequence.
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RNN model that combines 94 SP and 3 AP values. d, Model construction workflow
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diagram. e, Most commonly selected hyperparameter values, along with the
number of occurrences: ‘Num cells’in a bidirectional LSTM layer, ‘kernel size’ used
inthe convolutional layer and ‘dense’ that presents the number of units in the final
densely connected layer of the model. f, Maximum accuracy (Max Acc), minimal
loss (Min Loss), average accuracy (Avg Acc) and average loss (Avg Loss) during
training, along with standard deviations.

oftenused for sequential or temporal problems, such as language trans-
lation and processing, in Apple Siri® and Google Translate®. Their
architecture facilitates memorizing previously received inputs, whichis
animportant advantage, meaning that the output values they produce
are influenced by information acquired in previous time steps®. To
date, ML-based approaches have faced limitations due to the insuf-
ficient size and quality of available datasets®®. To overcome this chal-
lenge, we manually curated a dataset comprising 368 peptides with
experimentally validated assembly status (Supplementary Data 1),
labelled as self-assembling (SA; 249 peptides) and non-assembling
(NSA; 119 peptides).

Dipeptides and tripeptides, such as FF, YY, WW and FFF, have
beenwidely used as basic building blocks in peptide nanotechnology

to generate highly organized supramolecular materials with diverse
architectures®***, Among them, FF is the most studied one” and,
alongside VFF, constitutes the key motif found in B-amyloid proteins
associated with Alzheimer’s disease®®. The SA process and the resulting
morphology of supramolecular assemblies are influenced by amino
acid composition, physicochemical properties, position of specific
amino acids withinthe sequence and their neighbouring residues®*”*%,
Although distinct sequence patterns exist, accurately predicting the
SA propensity solely based on an amino acid sequence remains chal-
lenging®. For this reason, the AP scores of amino acids, dipeptides and
tripeptides were incorporated as crucial input values in our models,
which aim to predict the SA propensity of longer sequences based on
the existing knowledge of minimalistic ones. To enhance the predictive
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power of the models, we combined the AP scores with the sequential
properties (SP) representation scheme®, allowing the computation of
heterogeneous data and therefore enriching the peptide feature space.
The RNNmodels were trained by leveraging three peptide feature
categories based on (1) AP scores, (2) SP values and (3) hybrid AP-SP.
Previous studies have demonstrated the value of using AP scores as
predictors of SA'***%®, However, they faced limitations in efficiently
predicting the SA propensity of longer sequences based solely on
AP scores. To overcome this, we propose a sliding window approach
to extract the AP scores of contiguous amino acids, dipeptides and
tripeptides within the original sequence and use their combination to
boost information gain and improve the predictive performance for
longer sequences. In addition, the SP representation scheme, which
proved effective for therapeutic peptides®’, was used to capture the
sequential and physicochemical characteristics of peptides.

Building and fine-tuning the neural network models
Data preprocessing to obtain structured datasets preceded model
training and included the scaling of AP and SP values to arange [-1, 1]
to facilitate gradient flow and improve the prediction performance’’".
Furthermore, to accelerate training, all the peptides were padded to the
maximum peptide length (within the dataset) of 24 residues, allowing
thesequencestobe processedinbatches. Anarbitrary value of 2, out-
sidethe[-1,1] scalingrange, was used as the padding value for peptide
descriptors. The identification and property calculation of minimal
sequence-building motifs was carried out using sliding windows of
variable lengths (Fig. 2b). The way the input data is processed within
the SP (Supplementary Fig. 1), AP (Supplementary Fig. 2) and hybrid
AP-SP (Fig. 2c) models demonstrates their increasing complexity in
terms of the required sliding windows and long short-term memory
(LSTM) layers. LSTM layers were chosen due to the profound effec-
tiveness of LSTM cells in addressing the vanishing gradient problem,
ensuring efficient training, and improving performance when dealing
with extensive sequentially dependent data”™.

As the number of SP descriptors is much larger than that of AP
(94 compared with 3), we hypothesized that such a ratio contributes
to a diminished influence of AP values on SA prediction in the hybrid
AP-SP model. Therefore, to bring the number of AP and SP features
to acommon scale, we applied the ¢-distributed stochastic neighbour
embedding (¢-SNE)” dimensionality reduction technique and extracted
3 meta-featuresfromthe 94 physicochemical properties for eachamino
acid. ¢t-SNE was used due to its established use in peptide research to
generate meta-features and facilitate data visualization””. In total, five
models with three main architectures (Fig. 3) were developed: (1) AP
model; (2) SPmodel; (3) hybrid AP-SP model; and two models with ¢-SNE
preprocessing of SP properties, namely, (4) t-SNE SP and (5) t-SNE AP-SP.

During training, stratified fivefold cross-validation was used to
avoid overfitting and yield an unbiased performance estimate of our
models (Methods), whereas the original SA-NSA class ratio of approxi-
mately 2:1in the dataset (Fig. 2a) was maintained when generating
folds. A grid search procedure was used as part of nested fivefold
cross-validation to optimize the hyperparameters (Fig. 2d and Sup-
plementary Table 1) by selecting the values that resulted in the best
performance (Fig. 2e). The 368 peptides within the dataset were allo-
cated to different subsets, leaving 236-237 peptides for training the
model, 58-59 for validation and 73-74 for testing in each run. Training
and validation loss along with the respective accuracy scores were
monitored during hyperparameter optimization (Fig. 2f and Supple-
mentary Fig.3). A similar level of loss between training and validation,
together withaclear trend ofimprovement, indicates that overfitting
is successfully avoided. The hybrid AP-SP RNN model achieved the
highest average accuracy of 85.21% and the second-lowest average
loss of 0.465 during training. It is closely followed by the SP model
with the second-highest average accuracy of 85.01% and the lowest
average loss of 0.451.

Testing and benchmarking the models

The performance of the proposed models in terms of their prediction
probability distribution in all the test folds (Fig. 3d-h) shows a clear
overlap of the SA and NSA groups (Fig. 3d), indicating the inability of
the AP model to effectively discriminate between positive and negative
classes. However, the introduction of SP features into the models led
to agreater number of true-positive and true-negative cases, visually
manifested asawidened gap between the SA and NSA classes (Fig. 3e,f).
This resulted inincreased accuracy when the models were applied to
sequences not seen during training.

For a comprehensive assessment of the neural networks’ perfor-
mance, the following set of evaluation metrics was used: precision-recall
(PR) andreceiver operating characteristic (ROC) curves, the correspond-
ing area under the curves (PR AUC and ROC AUC), classification accu-
racy, F1score, and geometric mean (gmean) of true-negative rates and
true-positive rates. The sigmoid output of the models was assigned to a
binary class using the optimal classification thresholds determined dur-
ing the hyperparameter optimization (Supplementary Table 2). Along
with the standard classification threshold of 0.5, thresholds were also
estimated from the ROCand PR curves using the shortest distance tothe
ideal performance point (100% true-positive rate and 0% false-positive
rate for ROC, and 100% precision and recall for PR) (Supplementary
Figs. 4-8). Although certain improvements in gmean can be achieved
using ROC or 0.5thresholds, PR thresholds produce the highest F1values
for all the models (Table 1). Considering that F1 successfully addresses
the classimbalance and provides an unbiased estimate of the predictive
power of the models, we applied the PR thresholds to the remaining
analyses.

The AP-SP model achieved the best performance according to
every evaluation setup, reaching an accuracy of 81.9% and an F1 score
of 0.865 (Table 1). This indicated that the model successfully differen-
tiates between the SA and NSA classes. It is closely followed by the SP
model with an accuracy of 80.4% and an F1 score of 0.856, whereas the
AP model had a diminished performance compared with both SP and
AP-SP (Table 1), which is consistent with the predictive power of the
models (Fig.3d-f). Reducing the number of SPfeatures by ¢-SNE to match
thenumber of AP descriptors failed toimprove performance. However,
the hybrid t-SNE AP-SP still attained a better result than the AP model,
leading to the conclusion that the prediction of SA benefits from the
synergistic effect of heterogeneous features. This is further supported
by the statistically significant difference found between the classifica-
tion output of the SP and hybrid AP-SP models (P=0.043, n=1,840
peptides; McNemar’s two-sided test). These results are closely aligned
with the performance achieved during hyperparameter optimization
and training (Fig. 2f).

The proposed models were benchmarked with RF, as a simpler
representative of ML models that achieved excellent performance
in related studies'®’*””, along with more complex neural networks of
related architectures such as RNN’8, LSTM”, Bi-LSTM®, multilayer
perceptron (MLP)® and Transformer®? taken from another work®. All
neural network models sequentially process the amino acids as aseries
oftokens. Although benchmarking models used the phraseembedding
strategy for obtaining anumerical representation of tokens, our models
used AP and SP values for embedding the amino acids, and AP values for
dipeptides and tripeptides. Finally, RF used the SP-equivalent encoding
strategy, but the properties were calculated for the whole peptide due
toitsinability to process sequential type of data.

When tested on the aggregated set of peptides, the Transformer
achieved the best performance in terms of gmean (0.819) and accuracy
(83.7%), and the same level of F1score (0.878) as the LSTM architecture
(Extended DataTable1). Although their performanceis greater than of
the AP-SP, McNemar’s two-sided statistical tests (a = 0.05, n=1,840)
showed that their classification outputs are not significantly different.
Asignificant difference was only observed for RNNand MLP (P< 0.05),
which were outperformed by AP-SP (Extended Data Table 1).
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a-c, Schematic of the architectures, depicting differencesininputlayers and
configuration of LSTM or convolutional layers, for AP (a), SP (b) and hybrid
AP-SP (c) models. SELU, scaled exponential linear unit; 1D, one-dimensional.

d-h, Histograms of the prediction probability distribution on the aggregated
test folds for the AP (d), SP (e), hybrid AP-SP (f), t-SNE SP (g) and ¢-SNE AP-SP (h)
models demonstrate the ability of each model to discriminate between the two
classes of peptides: SA (blue) and NSA (red).

Benchmarking of the models was further investigated in a
real-world use-case scenario of 11 pentapeptides proposed by human
experts and 9 predicted by Al expert based on RF'°, with an experi-
mentally verified SA status. Considering that human and Al experts
predicted only the positive class, their true-negative rate and gmean
values were equal to O (Extended Data Table 1). Furthermore, the 20
pentapeptides exhibited a 60%:40% ratio skewed towards the assem-
bling sequences (Supplementary Fig. 13a), making the F1 score the
best option for ranking the models. Allmodels trained on the curated
dataset, except t-SNE SP, performed better than human experts (Sup-
plementary Table 3). Among the benchmarked models (Extended Data
Table 1), AP-SP is the best performing one (gmean, 0.928; F1 score,
0.930; accuracy, 92%), followed by LSTM (gmean, 0.841; F1score, 0.861;
accuracy, 84%). Furthermore, the AP-SP and SP models (F1score, 0.942;
accuracy, 93%) performed similarly (Supplementary Table 3), both
outperforming the Al expert (F1 score, 0.800; accuracy, 67%). With
standard deviation values below 2% for the full dataset and below 4%
for 20 pentapeptides across all the evaluation metrics, this suggests
that the AP-SP modelis highly stable and robust, as well as capable of
effectively generalizing information. Stable performance was observed

for pentapeptides and hexapeptides, which constitute the majority
of the dataset (Fig. 2a), as well as for sequences composed of 8,9, 3
or 16 residues, which had fewer samples for training (Supplementary
Table 4). An additional analysis of model exploitation for over 6,000
pentapeptides processed by MD'’ showed that reducing the number
of features and retaining the most informative ones can help models
in generalizing their knowledge more successfully on unseen data
(Supplementary Section 2).

Onthe basis of this, we envision that our models will complement
rather than compete with human intuition in the discovery of new
knowledge about peptide SA by facilitating a guided search of the
sequence space, providing a platform specialized in offering educated
guesses to the peptide SA problem.

Model applicability in unexplored sequence space

The effectiveness of the AP-SP model becomes more apparent when
used as a knowledgeable tool aimed at discovering sequences with a
high SA propensity. In this context, the model served as a guideline in
agenetic-algorithm-based generative approach®. The algorithm was
conditioned to generate hexapeptides (Fig. 4a) aswell as 5-10 residue
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Table 1| Performance of the proposed RNN models

Metric AP SP AP-SP t-SNE SP t-SNE AP-SP
ROC AUC 0.817 (0.004) 0.864 (0.006) 0.862(0.017) 0.772 (0.010) 0.839(0.014)
gmean (ROC threshold) 0.742 (0.005) 0.796 (0.009) 0.798 (0.018) 0.702 (0.008) 0.759 (0.013)
F1(ROC threshold) 0.772 (0.006) 0.833(0.009) 0.841(0.008) 0.688 (0.010) 0.784 (0.011)
Acc (ROC threshold) 72.5% (0.6%) 79.0% (1.0%) 79.7% (1.1%) 66.2% (0.9%) 73.9% (1.2%)
PR AUC 0.896 (0.005) 0.919 (0.003) 0.920 (0.009) 0.890 (0.004) 0.911(0.010)
gmean (PR threshold) 0.639 (0.013) 0.768 (0.010) 0.794 (0.016) 0.582 (0.021) 0.728 (0.013)
F1 (PR threshold) 0.824 (0.006) 0.856 (0.002) 0.865 (0.008) 0.796 (0.005) 0.830 (0.008)
Acc (PR threshold) 74.6% (0.8%) 80.4% (0.4%) 81.9% (1.1%) 70.4% (0.8%) 77.0% (1.0%)
gmean (0.5) 0.739 (0.005) 0.797 (0.012) 0.801(0.017) 0.716 (0.007) 0.760 (0.017)
F1(0.5) 0.771(0.006) 0.844(0.010) 0.853(0.006) 0.717 (0.008) 0.800 (0.014)
Acc (0.5) 72.3% (0.6%) 79.9% (1.2%) 80.9% (0.9%) 68.2% (0.8%) 75.2% (1.6%)

The average values and the standard deviation (in brackets) are calculated over an aggregated set of test folds with five different seeds in terms of AUC; the geometric mean of true-positive
rate and true-negative rate; F1score; and classification accuracy for the ROC, PR and standard 0.5 thresholds. The best scores per metric, when rounded to two decimal places, are marked
in bold. McNemar's two-sided statistical test showed a statistically significant difference between the classification probability of SP and AP-SP models (P=0.043, n=1,840). The test was
conducted using predictions from the five-times-repeated testing phase, which resulted in five associated predictions for each of the 368 peptides in the dataset.

peptides (Fig. 4b) because 85% of the sequences in our dataset fall
within this range, with the most prevalent length being six (Fig. 2a).
When conditioned to generate sequences 5-10 residues long, the gen-
erative model showed astrong tendency towards decapeptides (Fig. 4b
and Supplementary Table 5).

To stress the importance of searching through the unexplored
regions of the peptide chemical space, we visualized the result-
ing sequences as plot points in two-dimensional space based on
their mutual similarities calculated by Needleman-Wunsch global
sequence alignment®, The distances among the generated hexa-
peptides (Fig. 4a, blue points) and among the peptides 5-10 residues
long (Fig. 4b, green points) were optimized by stochastic gradient
descenttoreflect their similarity to each other (Sim,,,). Having all the
sequences contained inthe training set represented as a single point
(Fig.4a,b,red), the average similarity between the generated peptides
and the training data (Sim,,,;,) was used as amore important indicator
of similarity and intentionally maintained ata lower visualizationerror
(below 6%) in this plot.

The top five generated peptides with the highest SA probability
(Fig. 4a,b) show low Sim,,;, but 40% or higher Sim,,,, which derives
from the tendency of the generative model to converge to asingle best
peptide. Thisisageneral characteristic of the single-criterion optimi-
zation procedures, supported by a selection pressure that ensures a
rise in SA propensity as the algorithm progresses. Although a single
experiment yields ahomogeneous population, by studying the motifs
and sequences across distinct experiments (Supplementary Table 7),
we can conclude that the stochastic component of the algorithm
ensures convergence to different peptides each time, offering diverse
solutions for researchers to choose from. Furthermore, algorithm
convergence resulted in the emergence of specific motifs during
evolution (Supplementary Section 3).

The generated peptides (Fig. 4a,b) were validated using
CG-MD simulations. Their AP was assessed through changes in
solvent-accessible surface area (SASA) by calculating the AP, score
following 200 ns simulations. AP scores, as well as visual inspection
of initial (¢=0 ns) and final (¢ =200 ns) simulation frames, confirmed
that all the generated hexapeptides and decapeptides show a strong
tendency towards aggregation (Fig. 4c,d and Extended Data Fig. 1).
Furthermore, interpeptide contacts (AP.,...)*° were inspected for
additional confirmation of the aggregation behaviour. The previously
established AP, cut-off value (1.75; Supplementary Section 2) and the
AP, threshold reported in the literature (0.5 (ref. 86)) were used
as the aggregation criteria. Together, these two metrics can indicate

structural shapes or aggregate numbers, giving an additional insight
into aggregation dynamics.

All the decapeptides aggregated according to the set criteria,
which canbe visually confirmed by the differences between the initial
and final frames (Fig. 4d, Supplementary Fig. 9 and Extended Data
Fig.1). Furthermore, all the hexapeptides scored above the set APg,q,
cut-off,and the 200 ns frames confirmed the formation of aggregates
(Fig. 4c,Supplementary Fig.10 and Extended Data Fig.1). IMGIIA with
AP, marginally below the threshold showed aggregation similar to
the other hexapeptides, but with a more flat morphology (Extended
Data Fig. 1). IMCIEW failed to meet the AP, criterion after 100 ns;
although it passed the APg,s, threshold after 200 ns, it showed less
pronounced differences between the initial and final frames, possibly
indicating a lower propensity towards aggregation or a less-ordered
supramolecular structure compared with other generated peptides.

Asacontrol, hexapeptides and decapeptides with low propensity
to assemble were generated; when evaluated by MD, only VNGYSPK-
WPG had AP, above the threshold (Supplementary Figs. 9 and 10).
A clear distinction between the distribution of positive and negative
classes in terms of APg,s, can be confirmed by the box-plot diagrams
(Supplementary Fig.11). Although this suggests that the AP-SP classi-
fier successfully discriminates between classes, its intended purpose
inthe generative modelis not to produce sequences that lack a target
property. Moreover, the number of NSA peptides in the training set is
lower than the number of SA peptides, which might be an additional
challenge for the ML model.

We experimentally validated five sequences selected based on
their highest SA probability given by the AP-SP classifier or the high-
est AP, scores after 100 ns simulations (Extended Data Fig. 1a), as
follows: FMGIIF (FF6) with APg,s, = 2.20; IMGIIA (IA6) with SA prob-
ability = 99.4%; IMCIEW (IW6) with SA probability = 99.0%; FATAA-
GGNMF (FF10) with APg,s, =2.27 and FGDAAGGNTT (FT10) with SA
probability = 99.9%. The AP and formation of 3-sheet-like assemblies
was assessed in MilliQ water, at pH 7, across a range of peptide concen-
trations (5 mMto 0.039 mM). The sample’s opacity was monitored by
optical density (OD) measurements at 600 nm (OD600). FF10, IW6,
IA6 and FF6 exhibited an OD600 value greater than 0.1 (for water,
0D600 =0.036), indicating aggregation'®. Specifically, FF6 and IW6
formed cloudy suspensions. IA6 and FF10 resulted in clearer, viscous
suspensions. FT10 remained a clear solution throughout the con-
centration range (Fig. 5a). The formation of ordered supramolecular
B-sheet-like assemblies was confirmed by an increase in Thioflavin T
(ThT) fluorescence at 480 nm that was more pronounced for FF10,
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Fig. 4 | Peptides generated by the AP-SP-guided generative model. a,b, A plot
depicting the similarities between the generated peptides and the sequences
used for model training, along with the accompanying table containing the top
five generated sequences with the highest probability of SA for hexapeptides
(visualization errors: 5.82% for Sim,,;, and 23.75% for Sim,,,) (a) and peptides
with lengths between 5and 10 residues (visualization errors: 5.97% for Sim,,,;, and
18.89% for Sim,,,) (b). Sim,,,;, and Sim,, present exact calculationsin terms of the
average similarities of the generated peptides with the training data and other

L M N P Q R S T v w Y

Amino acid

generated sequences in the same table, respectively. The full list of generated
peptidesis givenin Supplementary Table 6. c¢,d, AP of the generated peptides

was assessed using CG-MD simulations where the initial (O ns) and final (200 ns)
frames are shown for an example hexapeptide (FMGIIF) (c) and decapeptide
(FATAAGGNNF) (d). e, Comparison of amino acid distributions within the training
dataset (n=9,539 amino acids), generated sequences with six residues (n =108
amino acids) and generated sequences with 5-10 residues (n = 251 amino acids).
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Fig. 5| Experimental validation of selected generated peptides. a, Heat map
representing the sample opacity, indicating aggregation or assembly. Each
sample (FF6,1A6, W6, FF10 and FT10) was measured across a concentration
range from 5 mM to 0.039 mM. The opacity, measured as OD600, increases
with concentration for all the peptides, with the exception of FT10.b, ThT
fluorescence intensity indicating the formation of supramolecular 3-sheets.
Dataare presented as mean values (n = 3 independent experiments) + standard
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deviationin the bar charts, overlaid by individual measurements in the dot plots.
¢, ATR-FTIR spectradisplaying the characteristic peak for the hydrogen-bonding
patternin B-sheets at 1,624 cm™ for FF6,1A6 and IW6 and 1,626 cm™ for FF10.

d, TEMimages showing fibrillar morphologies for FF6 (scale bar, 2 um), 1A6 (scale
bar,2 pm), FF10 (scale bar,1 pm) and amorphous aggregates for IW6 (scale bar,
1pum) at aconcentration of 5 mM.

followed by FF6,1A6 and IW6 (Fig. 5b), as well as a characteristic peakin
the Fourier transforminfrared (FTIR) spectraat1,624 cm™ for hexapep-
tidesand 1,626 cm™ for FF10, indicating B-sheet hydrogen-bonding pat-
terns (Fig. 5¢). The different fluorescence emission intensities (Fig. 5b)
couldbe duetothevaryingbinding affinities of ThT for specific struc-
tural and chemical features within amyloid-like fibrils¥, suggesting
different supramolecular morphology for each peptide. Fluorescence
microscopy provided avisual confirmation of ThT binding to peptide
aggregates, from bundles of fibres for IA6 to larger aggregates of
undefined morphology for FF6,IW6 and FF10 (Supplementary Fig.17),
confirming amyloid-like aggregation. Transmission electron micros-
copy (TEM) showed entangled nanofibres for FF6 and IA6, fibrillar
networks for FF10 and amorphous aggregates for IW6 (Fig. 5d). Onthe
contrary, FT10 did not show atendency to form -sheet-like structures,
as evidenced by OD600, FTIR and fluorescence (Fig. 5), indicating a
lack of aggregation or SA. However, to rule out its assembly potential,
further studies are required under different solvent and pH conditions.

The propensity of peptides to form supramolecular structuresis
influenced by their sequence, which determines the nature of interac-
tions that guide their assembly and by the experimental conditions>*®,
Even small changes can drastically affect the aggregation behaviour
and morphology of supramolecular assemblies®’. Therefore, explor-
ing awider range of peptide concentrations, buffer compositions, pH,

temperatures and ionic strengths will complement this preliminary
screening of aggregation behaviour and reveal the full potential these
sequences might have as peptide materials.

These findings indicate that our model can be effectively used in
generative Alapproachesto create sequences characterized by diverse
compositions and a strong propensity for SA, as well as maintaining
minimal resemblance to previously reported sequencesin theliterature
and the current dataset. This is further supported by the comparison
of the amino acid distribution between the training and generated
data (Fig. 4e). In this context, our model offers a means to explore
novel regions of the chemical space rather than simply reproducing
sequences encountered during the training process.

Conclusion

The challenge of identifying new peptide-based supramolecular materi-
alsonthe basis of their sequencesstill persists. A thorough examination
of compounds residing inaspecific part of the chemical space consti-
tutes an NP-hard combinatorial challenge, which remains infeasible
for sequences longer than three residues. Although experimental
discovery complemented by MD simulations remains the prevailing
approachforuncovering new self-assembling peptides, such methods
are burdened by high computational costs, require substantial time
and need highly skilled experts.
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The premise of this research is that longer peptides can be rep-
resented by their simpler building blocks (amino acids, dipeptides
and tripeptides) whose properties may be used to predict their SA
status. Five sequence-to-assembly RNN-based prediction models were
developed by varying the architecture, input dataand training param-
eters. Using precomputed AP scores obtained through the use of slid-
ing windows that were 1, 2 or 3 residues in length, along with specific
physicochemical properties, the models were trained on experimental
data curated from the literature. This enabled the models to analyse
sequences of arbitrary length without the need for extensive AP score
calculations using MD.

The hybrid AP-SP model discriminated between SA and NSA pep-
tideswithahighFlscore of 0.865and its ability to generalize knowledge
to regions of the chemical space that are unexplored by the existing
datasets was put to testinagenerative model. The validation of the gen-
erated peptides (ten SA and ten NSA) using MD simulations confirmed
the model precision of 90-100%. The ground-truth experimental vali-
dation was conducted for three hexapeptides and two decapeptides.
OD, attenuated total reflectance (ATR)-FTIR, ThT assay and TEM (Fig. 5)
measurements confirmed that four out of five peptides self-assemble,
which is consistent with the accuracy of the AP-SP classifier (81.9%)
usedinthe ML-guided generative model.

Consequently, the generative model outperformed human and Al
experts with 25% to 35% greater accuracy’. Given the resource-intensive
nature of the existing methods for SA inference, the ML models can
pinpoint sequences with a high propensity towards SA while requir-
ing substantially less time and fewer resources. We believe that the
accuracy of the generative model demonstrates that the developed
ML models successfully captured the underlying rules stored in the
experimentally validated data and, as such, present a way to comple-
ment human intuition in the discovery of peptides with a high prob-
ability to self-assemble and offer opportunities for the development
of intelligent and self-driving laboratories in the future that will allow
for afaster and sustainable discovery of new materials.

Methods

Thesource codefor this researchwas writtenin the Python programming
language (version 3.10.13).

Dataset

Atotal of 368 peptides with validated SA behaviour were extracted from
published articles, including 249 SA and 119 NSA sequences. The dataset
and details on the specific methods used for the experimental valida-
tion of peptide SA are provided in Supplementary Datal, as well asin
thecited literature. Peptide SA is studied mainly in sequences shorter
than 24 residues’® and, consequently, this is the maximal sequence
length in the dataset (Fig. 2a).

Sliding window approach to feature extraction

The AP values for the input to the models (amino acids, dipeptides and
tripeptides as subsets of the peptide sequence) were obtained using a
sliding window ofthe corresponding size. When amino acids were used,
the array of extracted AP values was of the same length as the peptide
under consideration. When dipeptides or tripeptides were examined
as building units of the original sequence, the arrays were shorter by
oneortwo entries, respectively. The sliding window of size 1-analysing
physicochemical descriptors of individual amino acids—was applied to
obtain SPfeature vectors for the SP models, as described elsewhere®.

Scaling of input values

The AP values for amino acids, dipeptides and tripeptides were
obtained from the literature®*”°, and are not directly comparable
in terms of scale and the underlying interpretation. The AP scores of
dipeptides and tripeptides represent the percentage of the surface of
apeptide exposed to water before and after aggregation, whereas the

AP values of amino acids represent the energy released during the for-
mation of supramolecular structures and can assume negative values.
In addition to AP, 94 physicochemical properties were used as amino
acid descriptors®. To boost performance and mitigate problems that
may arise due to the varying magnitudes among different parts of the
input data’®”", we used min-max scalingand mapped the values of each
featureinto therange[-1,1].

Sequence padding for accelerated training

Training the model in batches accelerates the process and enables
faster convergence”. However, this requires that all the sequencesina
batchare paddedto anequallength. The padding value was arbitrarily
set to 2, meeting the requirement of being outside the feasible [-1, 1]
value range of the input features. The padded values were masked for
processing in ML models to ensure that the padding is ignored and
does not affect the inference.

Initial settings and callbacks during training

The training was limited to 70 epochs. The batch size was set at 600 to
ensure that all the peptides were processed in a single batch, thereby
obtaining the fastest speed of operation and smoother gradients. The
initial learning rate was set to 0.01 and was reduced by approximately
10% per epoch (multiplied by e™®), starting from the tenth epoch
onwards. Only the model with the lowest validation loss was saved.

Hyperparameter optimization

Anested cross-validation consisting of five folds in the inner and outer
loops was used to determine the best hyperparameters and prevent
information leakage, which could result in overestimated capabili-
ties of the models. This indicates a detailed optimization procedure
that yields five repeated measurements (Fig. 2d). The outer loop of
the nested fivefold cross-validation split the dataset into (1) an outer
training and validation fold and (2) an outer test fold, whereas the inner
loop additionally divided the outer training and validation fold into (3)
aninner training fold and (4) aninner validation fold. The models were
trained using eachinner training fold and all the possible combinations
of hyperparameters chosen for the grid search. The hyperparameters
that yielded a model with the lowest loss averaged over all the inner
validation folds were applied for training and testing of the model with
the outer folds ((1) and (2), respectively).

Architecture tuning

The submodels that used the AP values applied two LSTM layers with
five unitsto theinputdata, with the firstlayer being bidirectional. These
submodels also encompassed a dense layer with 64 or 128 units, fol-
lowed by the scaled exponential linear unit activation. Onthe contrary,
the submodels that processed the SP values used two one-dimensional
convolutionallayers, each havingfive filters and akernel size of 4 or 6.
This presents a notable reduction in the number of filters compared
with previous research on therapeutic peptides®, which we attribute
to the smaller dataset. The kernels were convolved over the peptides’
spatial dimension to produce output tensors. The subsequent appli-
cation of a bidirectional LSTM layer with 32, 48 or 64 units enabled
capturing intricate dependencies within the peptide sequences. The
modelsthat used lower-dimensionality descriptorsin the feature space
compensated for the lack of information available to characterize the
datawith alarger output-space size.

Overfitting control and final predictions

A50%dropoutregularization was applied to the final layer of all submod-
els (Fig. 3a-c) asamechanism to prevent overfitting®. Because relatively
complexmodels were applied to asmall dataset, alarge dropout percent-
age was necessary to prevent the models from overly adapting to the
distribution of the training data. Prevalent dropout values of 10%, 20%
and30% from the literature®* were also examined; however, they were not
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partofthe hyperparameter optimization procedure. The sigmoid activa-
tionfunctionwas applied to the final layer of each model toyield avalue
between 0 and1, representing the probability of aninput sequence exhib-
iting SA. Thesmallvariationsintrue-positive, true-negative, false-positive
and false-negative predictions (Supplementary Fig. 12) proved that
overfitting was successfully avoided.

Configuration of models used for benchmarking

All the deep-learning models taken from ref. 83 were trained with an
initial learning rate of 0.2, a vocabulary size of 21 (representing the
number of amino acids), amaximum peptide sequence length of 24 and
a batch size of 1,024. Only the MLP model was trained for 50 epochs,
whereas otherswere trained for100. A grid search with nested fivefold
cross-validation was used to optimize the RF hyperparameters for
eachsplitseparately. It explored the number of treesin the forest with
values set to 100, 200, 300, 400 and 500, and tried the Gini, entropy
and log-loss splitting criteria. The maximum depth of the trees was
evaluated with values of 3, 6, 9,12 and unlimited depth, whereas the
minimum number ofinstances required to splitaninternal node was set
to2,5and10. Additionally, the minimum number of instances required
tobeataleafnode was tested with values of 1,2 and 4.

Generative model

The generative approach utilized a genetic algorithm from another
work®*with the proposed hybrid AP-SP SA prediction model serving as
afitnessfunction. Theinitial population of 50 sequences contained pep-
tides of varying lengths (from 3 to 24 residues) and was constructed by
randomly sampling aset of 20 proteinogenic aminoacids. Ineach of the
30algorithmiterations, 30 new sequences were created by performing
tournament selection with three individuals and applying a single-point
crossover. Each sequence had a5% chance of being mutated using four
equiprobable mutations: amino acid insertion, deletion, swap and
change. The algorithm was conditioned to keep the populationdiverse
and favour specific peptide lengths (6 in the first case and 5-10 in the
second case) by introducing two penalty factors that measured (1) the
average similarity of a peptide’s amino acid distribution to the other
sequencesinthe populationand (2) the difference between the length
ofthe peptide and the preferred length range.

MD validation of the generated peptides

Thevalidation of the AP of the generated peptides was performed using
MD, as described in previous studies®'***®, Briefly, Protein Data Bank
coordinate files for MD studies were prepared in PyMOL v1.2. Trans-
formation of all-atom coordinate files into CG representations was
achieved using the martinize.py script®. The input for this script was
defined using Martini force field v. 2.2P with the secondary-structure
input set to the extended [3-sheet (the ‘E’ symbol in the Dictionary
of Secondary Structure of Proteins)>**°, Simulations were carried
outin polarizable water by converting CG water with the triple-w.py
program®*. To maintain a consistent total amino acid count (approxi-
mately 1,200 amino acids) relative to the box size, each simulation
was performed by the random placement of 200 hexapeptides or 120
decapeptides in a 20 x 20 x 20 nm? cubic system, resulting in final
concentrations of 0.042 M and 0.025 M for hexapeptides and deca-
peptides, respectively. Each simulation underwent a three-step energy
minimization, a two-step equilibration and two separate dynamics
runslasting 100 nsand 200 ns each. Theinitial peptide setup was mini-
mized before the addition of water. After adding polarizable water, a
‘soft-core’ minimization lasting 20,000 steps of 20 fs was performed.
The system was then minimized again using standard steepest descent
algorithms for 50,000 steps with shorter 10 fs time steps. Equilibration
was conducted in two phases: an initial short V-rescale thermostat
and Berendsen barostat isotropic equilibration, followed by a more
extended Nose-Hoover thermostat and Parrinello-Rahman barostat
inasemi-isotropic system. This approach was adopted to combine the

stability of the former method with the precision of the latter method,
providing an accurate thermodynamic ensemble®. The V-rescale/
Berendsen phase had a time step of 6 fs and 15,000 steps, whereas
the Nose-Hoover/Parrinello-Rahman phase had 25 fs time steps and
500,000 steps. The dynamics runs lasted for 100 ns or 200 ns each,
using 20 fs time steps. The total wall time for each simulation—from
system preparation to the conclusion of the dynamics run—was approx-
imately 5 h for 100 ns and 7.5 h for 200 ns simulations per peptide
system on 10 Intel Xeon E5-2690v3 processors. The GROMACS SASA
tool’®was used to calculate the APy, scores. AP,,,.,.. score calculations
were performed using interpeptide distances to score aggregation®®.
On constructing a matrix of paths that visit each peptide in the system
exactly once, the weighted-average distance between two peptides for
each path was calculated, after which the maximum value was taken
as AP_,....- Distances were weighted using equation (1), where x rep-
resents the closest Euclidean distance between two beads in distinct
peptides ofinterest. The simulations were carried out using GROMACS
v.2023.2-IMPI12021.5 gcc13.1p3.10.5.

1 x<4A
wix) ={el=-H1 44 <x<12A 1
0 x>12A

Pearson’s and Spearman’s correlation coefficients

The sigmoid outputs from the models were assigned to a binary
class using different classification thresholds determined during the
hyperparameter optimization on the validation folds, as well as a fixed
threshold of 0.5. These binary classes were compared with actual pep-
tide labels that signify SA status. The corrcoef function from the numpy
library (v.1.23.5) was used to obtain the Pearson product-moment
correlation coefficients, whereas the Spearman’s correlation coeffi-
cient was assessed using the spearmanr function from the scipy.stats
package (v.1.9.3).

Consensus motifs of generated peptides

Multiple-sequence alignment was performed using Clustal Omega®’
through the EMBL-EBI’s online service’. Data were analysed through
Jalview”’, where the BLOSUM®62 colouring was used to show sequence
similarity. The motifs were derived from the phylogenetic tree. The
sequence logo graphs were generated by entering the FASTA notation
into the WebLogo online tool'*.

Experimental validation

The selected peptides were custom synthesized by GeneCust and are
as follows: FMGIIF (FF6; M,,, 727.0 Da; purity, 96.29%), IMGIIA (1A6;
M,, 616.88 Da; purity, 95.51%), IMCIEW (IW6; M,,, 794.06 Da; purity,
96.04%), FATAAGGNMEF (FF10; M,,, 986.22 Da; purity, 95.39%), FGDAA-
GGNTT (FT10; M,,, 910.02 Da; purity, 98.79%). For all the peptides,
salt exchange was performed using 10 mM HCl to remove any traces
of trifluoroacetic acid. Thioflavin T (ThT) and deuterium oxide were
purchased from Sigma-Aldrich.

Sample preparation. The lyophilized powder of each peptide was
weighed and dissolved in 10 mM NaOH prepared in MilliQ water or
deuterium oxide (Sigma-Aldrich). The pH was adjusted to 7 with HCI
prepared in MilliQ water or deuterium oxide. The samples were either
used as prepared or diluted for further characterization.

Optical density. Sample opacity was used as an indicator of aggrega-
tion or assembly. Here 100 pl of each sample was added to a 96-well
plate with concentrations ranging from 5 mM to 0.039 mM following
twofold serial dilutions and the absorbance was recorded at 600 nm
(0OD600, Hidex Sense microplate reader).
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ThT binding assay. ThT binding assay was performed using a peptide
concentration of 5 mM for all the samples. The samples were incubated
for 15 min with a ThT stock solution prepared in methanol to a final
concentrationof 25 uM of ThT. Then, 100 pl of each sample was added
toa96-well plate and excited at 450 nm, and the emission spectrawere
recorded at 480 nm (Tecan Infinite M200 PRO microplate reader).

FTIR. Hydrogen-bonding patterns characteristic of peptide SA were
investigated using ATR-FTIR. The ATR-FTIR spectra of peptides were
recorded in deuterium oxide (Sigma-Aldrich) using an Agilent Tech-
nologies Cary 630 FTIR instrument (Sigma-Aldrich) in the range of
650-4,000 cm™ witharesolution of 16 cm™.

Fluorescent microscopy. The peptides (5 mM) were stained with 25 pM
ThT. Then,1plofthe peptide solution was dropped on aglass slide and
covered withacoverslip. Microscopy was performed using an Olympus
IX73 inverted fluorescent microscope equipped with differential inter-
ference contrast and fluorescence optics (mirror units; U-FUNA (blue):
EX360-370,DM410, EM420-460; U-FBWA (green): EX460-495, DM505,
EM510-550; and U-FGW (red): EX530-550, DM570, EMS575IF (Olympus)).
Theimages were acquired with an Olympus XM10 monochrome camera,
U-FBWA (green) filter, x60 magnification with 1.42-numerical-aperture
oil-immersion objective and CellSens Standard 2.3 software. Theimages
were analysed using ImageJ software (v.1.54).

TEM. TEM images were obtained using a JEOL JEM-1400Flash
microscope equipped with a20 MP complementary metal-oxide-
semiconductor XAROSA camera (EMSIS). The 5 mM samples were
deposited on copper grids covered with Formvar (Structure Probe)
and dried before imaging.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The datasets used in this research, along with pretrained models in
the H5 format, are available via GitHub at https://github.com/mnjir-
jak/ml_peptide_self assembly (ref. 101). The MD coordinates for the
initial and final frames of the simulations are available via figshare
at https://figshare.com/s/463150e29f478cc5e25e. We also provide a
workbook (Supplementary Data 1) detailing the self-assembling and
non-assembling sequences taken from the literature along with the
DOl and characterization methods, and raw fluorescence microscopy
and TEM data (Supplementary Data2). Source data are provided with
this paper.

Code availability
The source code for this research is available via GitHub at https://
github.com/mnjirjak/ml_peptide_self_assembly (ref.101).
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Extended Data Fig.1| Comparison of AP scores and the CG simulation images hexapeptides (c) and decapeptides (d) obtained by the generative model.

for the generated hexa- and decapeptides with high SA probability. a,b The The red and white spheres represent the main and side chain beads, respectively.
APgys4 (@) and AP, (B) scores for CG simulations of 100 ns (in blue) and 200 ns Horizontal red lines are drawn to show the thresholds for aggregation, 1.75 for
(in orange). ¢,d The visual representation of the initial frame (t = 0 ns) and the APgys4and 0.5 for APy ace-

final frames of two independent simulations at t=100 ns and t=200 ns for the
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Extended Data Table 1| Benchmarking the models: Comparison with the state-of-the-art

Metric | Transformer RNN LSTM Bi-LSTM MLP RF AP-SP | human*  AT**
0.819 0.746 0.805 0.797 0.748  0.772 0.794
gmean (0.011) (0.023)  (0.011)  (0.016)  (0.023) (0.010)  (0.016)
! 0.878 0.852  0.878 0.873 0.848  0.875 0.865
(0.005) (0.012)  (0.005)  (0.010)  (0.006) (0.006)  (0.008)
Ace 83.7% 79.5% 83.4% 82.8% 79.2%  82.6% 81.9%
(0.7%) (L.7%)  (0.7%) (1.4%) (1.0%)  (0.8%)  (1.1%)
p-value | 0.052 0.025  0.105 0.349 0.011 0464  baseline |
ean 0.780 0.775 0.841 0.803 0.712  0.702  0.928 0 3
g (0.025) (0.100)  (0.075)  (0.034)  (0.073) (0.038) (0.041)
0.789 0.828 0.861 0.824 0.791  0.817  0.930
T (0.025)  (0.066) (0.065)  (0.028)  (0.043) (0.032) (0.035) | °-706 0800
W 7% 79% 84% 80% 74% 76% 92% 55% e
(2.4%) (8.6%)  (7.3%) (3:2%)  (5.8%) (3.7%)  (4.0%) ¢ ?

* the human experts performance was estimated on 9 peptides they suggested (Batra et al., 2022.)
** the Al-expert performance was estimated on 11 peptides it predicted (Batra et al., 2022.)

The average and standard deviation (in brackets) is given for every model that was tested with 5 different seeds. The benchmarking models Transformer, RNN, LSTM, Bi-LSTM, MLP, and RF
were compared against AP-SP (PR thr) on the aggregated set of peptides using the McNemar’s two-sided test and the resulting p-values are marked in bold where a significant difference

(< 0.05) exists. The comparison in the lower part of the table is given for 20 experimentally verified pentapeptides, where human and Al-experts participated with their predictions. The 20
verified peptides, although included in our dataset, were consistently allocated to the test fold, ensuring a rigorous setup that aims to fairly estimate and compare the performance of the

models. The best scores per each metric, when rounded to two decimal places, are marked in bold.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

/a | Confirmed

>

{| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

X

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

O X X

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

X

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

XX [ [0 XX [0

X0

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used

Data analysis MD simulations were run using GROMACS 2023.2-IMP12021.5_gcc13.1_p3.10.5. McNemar's test statistic and P-values were determined using
chi2.sf method from scipy.stats.distributions package version 1.11.4. A custom code was written for calculating interpeptide contacts
(APcontact) according to the algorithm described in [1]. A set of 14 bash scripts, written in-house, execute the system preparation, simulation,
simulation postprocessing, and calculation of SASA and AP scores. The scripts use atomistic PDB files generated by PyMOL v1.2 and the “fab”
command to generate a Coarse-grained representation using martinize.py (v 2.6) software. We add polarizable water beads with triple-w.py.
Both codes are run with Python-2.7.18. Visual Molecular Dynamics (VMD) v1.9.3 was used for visualizing aggregates. The rest of the
experiment (ML models, generative Al approach, etc.) uses Python version 3.10.13. Matplotlib version 3.8.0 was used for plotting. The
similarity between peptides was assessed using global_pairwise_align_protein from skbio.alignment (scikit-bio package version 0.5.9). Custom
code implementing gradient descent was utilized to visualize plot points in Fig. 4a,b, as described in the paper.

[1] Thapa, S., Clark, F., Schneebeli, S. T., & Li, J. (2023). Multiscale Simulations to Discover Self-Assembled Oligopeptides: A Benchmarking
Study. Journal of Chemical Theory and Computation, 20(1), 375-384.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The datasets used in this research, along with pre-trained models in H5 format, are available in a public GitHub repository: https://github.com/mnjirjak/
ml_peptide_self_assembly. The molecular dynamics coordinates for the initial and final frames of the simulations are provided in a public Figshare repository:
https://figshare.com/s/463150e29f478cc5e25e. We also provide a workbook (Supplementary Data 1) detailing self-assembling and non-assembling sequences
taken from the literature along with DOI and characterisation methods, and raw fluorescence microscopy and TEM data (Supplementary Data 2).
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Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Not applicable

Population characteristics Not applicable
Recruitment Not applicable
Ethics oversight Not applicable

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size A sample size for McNemar's test of statistical significance was 1840 peptides, which is sufficient given the general recommendations of >=25
samples. A dataset of 368 peptides with experimentally confirmed self-assembly status was divided into train, validation and test using nested
5-fold cross-validation procedure, which yielded 236-237 peptides for training the model, 58-59 for validation, and 73-74 for testing.

Data exclusions  No data were excluded.

Replication Replication of the study is feasible by using the source code, pre-trained H5 models and a dataset which are provided in the GitHub
repository. However, due to random seeds that were used for the stochastic processes, small deviations may occur. Moreover, we provide
instructions on how random seeds can be set to a fixed value:

- For the predictive models, the seed can be set by modifying the seed.txt file in the SA_ML_predictive/data folder.
- For the generative model, the seed can be set in the header of the find_novel_peptides.py script in the SA_ML_generative folder.
For molecular dynamics, standard methodology was applied, which is thoroughly described in the Methods section.

Randomization  For all stochastic processes, we utilized a random seed generated by the underlying Python libraries:
- StratifiedKFold method from scikit-learn (version 1.1.3) for dividing the dataset into train, validation and test folds. The "shuffle" argument
was set to "True". The original ratio of self-assembly to non self-assembly peptides was maintained in the folds.
- For predictive models, we relied on the default parameters for random number generation provided by the underlying libraries (e.g.
Tensorflow version 2.10.0).
- Numpy version 1.26.3 was utilized for all operations that included randomness in the generative model.

Blinding Blinding was not relevant to this study because splitting the data into train, validation and testing folds was done purely algorithmic. By using
the k-fold cross-validation approach all peptide sequences were a part of the test folds exactly once.




Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
|:| Antibodies |Z |:| ChIP-seq
|:| Eukaryotic cell lines |Z |:| Flow cytometry
|:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging

|:| Animals and other organisms
|:| Clinical data
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