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Reshaping the discovery of self-assembling 
peptides with generative AI guided by hybrid 
deep learning

Supramolecular peptide-based materials have great potential for 
revolutionizing fields like nanotechnology and medicine. However, 
deciphering the intricate sequence-to-assembly pathway, essential for their 
real-life applications, remains a challenging endeavour. Their discovery relies 
primarily on empirical approaches that require substantial financial resources, 
impeding their disruptive potential. Consequently, despite the multitude of 
characterized self-assembling peptides and their demonstrated advantages, 
only a few peptide materials have found their way to the market. Machine 
learning trained on experimentally verified data presents a promising tool 
for quickly identifying sequences with a high propensity to self-assemble, 
thereby focusing resource expenditures on the most promising candidates. 
Here we introduce a framework that implements an accurate classifier in a 
metaheuristic-based generative model to navigate the search through the 
peptide sequence space of challenging size. For this purpose, we trained five 
recurrent neural networks among which the hybrid model that uses sequential 
information on aggregation propensity and specific physicochemical 
properties achieved a superior performance with 81.9% accuracy and 0.865 
F1 score. Molecular dynamics simulations and experimental validation have 
confirmed the generative model to be 80–95% accurate in the discovery of 
self-assembling peptides, outperforming the current state-of-the-art models. 
The proposed modular framework efficiently complements human intuition in 
the exploration of self-assembling peptides and presents an important step in 
the development of intelligent laboratories for accelerated material discovery.

Molecular self-assembly (SA) driven by weak, non-covalent interactions 
represents one of the fundamental chemical processes observed in 
living organisms1,2. Peptides, composed of 20 gene-encoded amino 
acids, serve as a versatile toolbox for obtaining supramolecular materi-
als with rich chemical and structural properties3. It is no surprise that 
the organization of peptidic building blocks into three-dimensional 
structures gives rise to materials that exhibit remarkable complexi-
ties and emerging functionalities, including catalysis and molecular 
recognition4–6. As a result, the rational and computational design of 

peptide-based materials, accompanied by extensive experimental 
validations, has led to the establishment of relevant and applicable 
design principles, enabling substantial progress in the development of 
supramolecular materials for a wide range of applications3,7–9. However, 
understanding of the sequence-to-structure and function relationships 
of peptides still remains beyond our comprehension.

Although expensive and time-consuming, the experimental 
discovery of new self-assembling peptides remains the prevailing 
approach10. However, this nondeterministic polynomial time (NP)-hard 
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longer sequences, including octapeptides and proteins46. Although a 
shift towards using artificial intelligence (AI) models for rapid screen-
ing is evident47,48, many studies still rely on MD for the final AP score 
calculations. As we progress towards exploring peptide spaces of 
increasing size, MD simulations ought to be complemented with ML 
to facilitate fast and unbiased exploration of the peptide space49,50. 
In a recent study, a least absolute shrinkage and selection operator 
regression model trained with 163 sequences was used to search for 
de novo self-assembling peptides for viral gene delivery51. A subset of 
16 promising hexapeptides showed a low accuracy of 25% when tested 
experimentally, which was improved to 50% after filtering the subset 
according to AP. Therefore, better models and more sophisticated 
representation schemes are needed to overcome the issue of complex 
multiparameter and multiscale dependencies therein.

Recurrent neural networks (RNNs) are particularly effective in 
processing data sequences due to their ability to capture sequential 
dependencies, distinguishing them from other ML models and network 
architectures52–55. Consequently, they have found widespread applica-
tion in sequence-to-function inference, such as sentiment analysis56,57—
a task highly similar to the prediction of peptide activity. Therefore, 
RNNs can exhibit performance superior to those of ML techniques such 
as RF, support vector machine and non-RNNs to assess SA propensity 
by modelling context-aware sequential relationships between peptide 
constituents58,59. In this paper, we introduce an RNN-based approach 
to assess the SA potential of unclassified peptides using irregularly 
sampled features of unequal length, based on AP scores of amino 
acids, dipeptides and tripeptides3,27,60 as predictor variables for any 
given peptide of interest (Fig. 1). Furthermore, the RNN classifier is 
used as a fitness function in a search-based genetic algorithm to form a 
generative model for the discovery of sequences with a high propensity 
towards SA. This model complements human intuition in an attempt 
to identify new peptides with high SA propensity, based on unbiased 
sequence-space exploration aided by ML.

Results and discussion
The task of predicting the SA propensity in peptides of arbitrary length 
was approached by a supervised learning classifier with sequence-based 
input and RNN architecture (Fig. 1). RNNs are deep learning algorithms 

discovery process advocates alternative methods for the efficient navi-
gation of the chemical space that grows exponentially with each amino 
acid added to the sequence11. Furthermore, laboratory investigations of 
supramolecular peptide nanostructures, including synthesis, purifica-
tion and characterization, can last for weeks and require highly skilled 
experts and sophisticated instrumentation12–17. On the contrary, the 
intractability of an exhaustive examination of the entire search space 
when considering peptides longer than three amino acids10 and the 
sparseness of useful molecules in such spaces18 led to design rules for 
peptide SA, namely, patterning strategies manipulating hydrophobic–
hydrophilic balance19 and molecular templating20. Such procedures 
tend to constrain peptide design and reduce the number of peptides 
that reside in the available search space to a more manageable level. 
Nevertheless, they introduce an unwanted bias towards specific regions 
of the search space, thereby disregarding potentially promising areas 
and limiting the discovery of novel sequences.

Molecular dynamics (MD) simulations contributed to consider-
ably reducing the time required to characterize individual compounds 
and increased the available screening throughput21–25. However, they 
tend to introduce errors into the results, the extent of which partially 
depends on the simulation setup details (for example, coarse-grained 
(CG) MD26, simulation time and system size27). Nevertheless, MD has 
been successfully applied to the estimation of aggregation propensity 
(AP) as a precursor stage of peptide SA for dipeptides27 and tripeptides3; 
however, extending this approach to tetrapeptides and beyond remains 
challenging due to high computational costs10,28,29.

Machine learning (ML) has emerged as an efficient alternative 
to MD for the in silico screening and optimization of therapeutic 
peptides30–41. ML algorithms run faster than MD simulations and can 
achieve acceptable accuracy with large datasets and the right choice 
of architecture10,42,43. However, they are mostly unexplored for the 
prediction of peptide SA propensity due to the scarcity and imbalance 
of data44. Recently, ML-based sequence preselections based on sup-
port vector machine and random forest (RF) models were applied to 
guide the search for self-assembling and hydrogel-forming peptides, 
demonstrating advantages over human experts10,45. This approach pro-
duced higher average AP scores compared with an exhaustive search, 
and its scalability made it applicable to search spaces comprising 
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Fig. 1 | Overview of the proposed research pipeline. The models are based 
on heterogeneous data obtained by applying AP sliding windows of varying 
lengths (amino acids, dipeptides and tripeptides) in combination with SP. Data 
preprocessing included (1) t-SNE for dimensionality reduction, (2) scaling of 
AP and SP values to a range of [−1, 1] to facilitate gradient flow and (3) padding 

shorter sequences to a maximum length of 24 residues to expedite training. The 
models were optimized and evaluated using the nested fivefold cross-validation 
sampling technique before yielding the final model ready for exploitation. With 
the aim of discovering sequences with high SA propensity, the hybrid AP–SP 
model was used as a guideline in a genetic-algorithm-based generative model.
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often used for sequential or temporal problems, such as language trans-
lation and processing, in Apple Siri61 and Google Translate62. Their 
architecture facilitates memorizing previously received inputs, which is 
an important advantage, meaning that the output values they produce 
are influenced by information acquired in previous time steps63. To 
date, ML-based approaches have faced limitations due to the insuf-
ficient size and quality of available datasets28. To overcome this chal-
lenge, we manually curated a dataset comprising 368 peptides with 
experimentally validated assembly status (Supplementary Data 1), 
labelled as self-assembling (SA; 249 peptides) and non-assembling 
(NSA; 119 peptides).

Dipeptides and tripeptides, such as FF, YY, WW and FFF, have 
been widely used as basic building blocks in peptide nanotechnology 

to generate highly organized supramolecular materials with diverse 
architectures3,64,65. Among them, FF is the most studied one2 and, 
alongside VFF, constitutes the key motif found in β-amyloid proteins 
associated with Alzheimer’s disease66. The SA process and the resulting 
morphology of supramolecular assemblies are influenced by amino 
acid composition, physicochemical properties, position of specific 
amino acids within the sequence and their neighbouring residues2,67,68. 
Although distinct sequence patterns exist, accurately predicting the 
SA propensity solely based on an amino acid sequence remains chal-
lenging51. For this reason, the AP scores of amino acids, dipeptides and 
tripeptides were incorporated as crucial input values in our models, 
which aim to predict the SA propensity of longer sequences based on 
the existing knowledge of minimalistic ones. To enhance the predictive 
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Fig. 2 | Neural network setup from dataset to sliding window mechanism 
and hyperparameter optimization. a, Distribution of peptide lengths within 
the dataset with the indicated numbers of SA (blue) and NSA (red) instances. 
b, Schematic of the sliding window preprocessing procedure identifying 
individual amino acids, dipeptides and tripeptides within the sequence.  
c, Structure of the input data for an example sequence NFGAIL and a hybrid AP–SP 
RNN model that combines 94 SP and 3 AP values. d, Model construction workflow 

diagram. e, Most commonly selected hyperparameter values, along with the 
number of occurrences: ‘Num cells’ in a bidirectional LSTM layer, ‘kernel size’ used 
in the convolutional layer and ‘dense’ that presents the number of units in the final 
densely connected layer of the model. f, Maximum accuracy (Max Acc), minimal 
loss (Min Loss), average accuracy (Avg Acc) and average loss (Avg Loss) during 
training, along with standard deviations.
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power of the models, we combined the AP scores with the sequential 
properties (SP) representation scheme69, allowing the computation of 
heterogeneous data and therefore enriching the peptide feature space.

The RNN models were trained by leveraging three peptide feature 
categories based on (1) AP scores, (2) SP values and (3) hybrid AP–SP. 
Previous studies have demonstrated the value of using AP scores as 
predictors of SA10,46,66. However, they faced limitations in efficiently 
predicting the SA propensity of longer sequences based solely on 
AP scores. To overcome this, we propose a sliding window approach 
to extract the AP scores of contiguous amino acids, dipeptides and 
tripeptides within the original sequence and use their combination to 
boost information gain and improve the predictive performance for 
longer sequences. In addition, the SP representation scheme, which 
proved effective for therapeutic peptides69, was used to capture the 
sequential and physicochemical characteristics of peptides.

Building and fine-tuning the neural network models
Data preprocessing to obtain structured datasets preceded model 
training and included the scaling of AP and SP values to a range [−1, 1] 
to facilitate gradient flow and improve the prediction performance70,71. 
Furthermore, to accelerate training, all the peptides were padded to the 
maximum peptide length (within the dataset) of 24 residues, allowing 
the sequences to be processed in batches. An arbitrary value of 2, out-
side the [−1, 1] scaling range, was used as the padding value for peptide 
descriptors. The identification and property calculation of minimal 
sequence-building motifs was carried out using sliding windows of 
variable lengths (Fig. 2b). The way the input data is processed within 
the SP (Supplementary Fig. 1), AP (Supplementary Fig. 2) and hybrid 
AP–SP (Fig. 2c) models demonstrates their increasing complexity in 
terms of the required sliding windows and long short-term memory 
(LSTM) layers. LSTM layers were chosen due to the profound effec-
tiveness of LSTM cells in addressing the vanishing gradient problem, 
ensuring efficient training, and improving performance when dealing 
with extensive sequentially dependent data72.

As the number of SP descriptors is much larger than that of AP 
(94 compared with 3), we hypothesized that such a ratio contributes 
to a diminished influence of AP values on SA prediction in the hybrid 
AP–SP model. Therefore, to bring the number of AP and SP features 
to a common scale, we applied the t-distributed stochastic neighbour 
embedding (t-SNE)73 dimensionality reduction technique and extracted 
3 meta-features from the 94 physicochemical properties for each amino 
acid. t-SNE was used due to its established use in peptide research to 
generate meta-features and facilitate data visualization74,75. In total, five 
models with three main architectures (Fig. 3) were developed: (1) AP 
model; (2) SP model; (3) hybrid AP–SP model; and two models with t-SNE 
preprocessing of SP properties, namely, (4) t-SNE SP and (5) t-SNE AP–SP.

During training, stratified fivefold cross-validation was used to 
avoid overfitting and yield an unbiased performance estimate of our 
models (Methods), whereas the original SA–NSA class ratio of approxi-
mately 2:1 in the dataset (Fig. 2a) was maintained when generating 
folds. A grid search procedure was used as part of nested fivefold 
cross-validation to optimize the hyperparameters (Fig. 2d and Sup-
plementary Table 1) by selecting the values that resulted in the best 
performance (Fig. 2e). The 368 peptides within the dataset were allo-
cated to different subsets, leaving 236–237 peptides for training the 
model, 58–59 for validation and 73–74 for testing in each run. Training 
and validation loss along with the respective accuracy scores were 
monitored during hyperparameter optimization (Fig. 2f and Supple-
mentary Fig. 3). A similar level of loss between training and validation, 
together with a clear trend of improvement, indicates that overfitting 
is successfully avoided. The hybrid AP–SP RNN model achieved the 
highest average accuracy of 85.21% and the second-lowest average 
loss of 0.465 during training. It is closely followed by the SP model 
with the second-highest average accuracy of 85.01% and the lowest 
average loss of 0.451.

Testing and benchmarking the models
The performance of the proposed models in terms of their prediction 
probability distribution in all the test folds (Fig. 3d–h) shows a clear 
overlap of the SA and NSA groups (Fig. 3d), indicating the inability of 
the AP model to effectively discriminate between positive and negative 
classes. However, the introduction of SP features into the models led 
to a greater number of true-positive and true-negative cases, visually 
manifested as a widened gap between the SA and NSA classes (Fig. 3e,f). 
This resulted in increased accuracy when the models were applied to 
sequences not seen during training.

For a comprehensive assessment of the neural networks’ perfor-
mance, the following set of evaluation metrics was used: precision–recall 
(PR) and receiver operating characteristic (ROC) curves, the correspond-
ing area under the curves (PR AUC and ROC AUC), classification accu-
racy, F1 score, and geometric mean (gmean) of true-negative rates and 
true-positive rates. The sigmoid output of the models was assigned to a 
binary class using the optimal classification thresholds determined dur-
ing the hyperparameter optimization (Supplementary Table 2). Along 
with the standard classification threshold of 0.5, thresholds were also 
estimated from the ROC and PR curves using the shortest distance to the 
ideal performance point (100% true-positive rate and 0% false-positive 
rate for ROC, and 100% precision and recall for PR) (Supplementary 
Figs. 4–8). Although certain improvements in gmean can be achieved 
using ROC or 0.5 thresholds, PR thresholds produce the highest F1 values 
for all the models (Table 1). Considering that F1 successfully addresses 
the class imbalance and provides an unbiased estimate of the predictive 
power of the models, we applied the PR thresholds to the remaining 
analyses.

The AP–SP model achieved the best performance according to 
every evaluation setup, reaching an accuracy of 81.9% and an F1 score 
of 0.865 (Table 1). This indicated that the model successfully differen-
tiates between the SA and NSA classes. It is closely followed by the SP 
model with an accuracy of 80.4% and an F1 score of 0.856, whereas the 
AP model had a diminished performance compared with both SP and 
AP–SP (Table 1), which is consistent with the predictive power of the 
models (Fig. 3d–f). Reducing the number of SP features by t-SNE to match 
the number of AP descriptors failed to improve performance. However, 
the hybrid t-SNE AP–SP still attained a better result than the AP model, 
leading to the conclusion that the prediction of SA benefits from the 
synergistic effect of heterogeneous features. This is further supported 
by the statistically significant difference found between the classifica-
tion output of the SP and hybrid AP–SP models (P = 0.043, n = 1,840 
peptides; McNemar’s two-sided test). These results are closely aligned 
with the performance achieved during hyperparameter optimization 
and training (Fig. 2f).

The proposed models were benchmarked with RF, as a simpler 
representative of ML models that achieved excellent performance 
in related studies10,76,77, along with more complex neural networks of 
related architectures such as RNN78, LSTM79, Bi-LSTM80, multilayer 
perceptron (MLP)81 and Transformer82 taken from another work83. All 
neural network models sequentially process the amino acids as a series 
of tokens. Although benchmarking models used the phrase embedding 
strategy for obtaining a numerical representation of tokens, our models 
used AP and SP values for embedding the amino acids, and AP values for 
dipeptides and tripeptides. Finally, RF used the SP-equivalent encoding 
strategy, but the properties were calculated for the whole peptide due 
to its inability to process sequential type of data.

When tested on the aggregated set of peptides, the Transformer 
achieved the best performance in terms of gmean (0.819) and accuracy 
(83.7%), and the same level of F1 score (0.878) as the LSTM architecture 
(Extended Data Table 1). Although their performance is greater than of 
the AP–SP, McNemar’s two-sided statistical tests (α = 0.05, n = 1,840) 
showed that their classification outputs are not significantly different. 
A significant difference was only observed for RNN and MLP (P < 0.05), 
which were outperformed by AP–SP (Extended Data Table 1).
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Benchmarking of the models was further investigated in a 
real-world use-case scenario of 11 pentapeptides proposed by human 
experts and 9 predicted by AI expert based on RF10, with an experi-
mentally verified SA status. Considering that human and AI experts 
predicted only the positive class, their true-negative rate and gmean 
values were equal to 0 (Extended Data Table 1). Furthermore, the 20 
pentapeptides exhibited a 60%:40% ratio skewed towards the assem-
bling sequences (Supplementary Fig. 13a), making the F1 score the 
best option for ranking the models. All models trained on the curated 
dataset, except t-SNE SP, performed better than human experts (Sup-
plementary Table 3). Among the benchmarked models (Extended Data 
Table 1), AP–SP is the best performing one (gmean, 0.928; F1 score, 
0.930; accuracy, 92%), followed by LSTM (gmean, 0.841; F1 score, 0.861; 
accuracy, 84%). Furthermore, the AP–SP and SP models (F1 score, 0.942; 
accuracy, 93%) performed similarly (Supplementary Table 3), both 
outperforming the AI expert (F1 score, 0.800; accuracy, 67%). With 
standard deviation values below 2% for the full dataset and below 4% 
for 20 pentapeptides across all the evaluation metrics, this suggests 
that the AP–SP model is highly stable and robust, as well as capable of 
effectively generalizing information. Stable performance was observed 

for pentapeptides and hexapeptides, which constitute the majority 
of the dataset (Fig. 2a), as well as for sequences composed of 8, 9, 3 
or 16 residues, which had fewer samples for training (Supplementary 
Table 4). An additional analysis of model exploitation for over 6,000 
pentapeptides processed by MD10 showed that reducing the number 
of features and retaining the most informative ones can help models 
in generalizing their knowledge more successfully on unseen data 
(Supplementary Section 2).

On the basis of this, we envision that our models will complement 
rather than compete with human intuition in the discovery of new 
knowledge about peptide SA by facilitating a guided search of the 
sequence space, providing a platform specialized in offering educated 
guesses to the peptide SA problem.

Model applicability in unexplored sequence space
The effectiveness of the AP–SP model becomes more apparent when 
used as a knowledgeable tool aimed at discovering sequences with a 
high SA propensity. In this context, the model served as a guideline in 
a genetic-algorithm-based generative approach84. The algorithm was 
conditioned to generate hexapeptides (Fig. 4a) as well as 5–10 residue 
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Fig. 3 | RNN architectures and the respective performance assessments. 
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d–h, Histograms of the prediction probability distribution on the aggregated 
test folds for the AP (d), SP (e), hybrid AP–SP (f), t-SNE SP (g) and t-SNE AP–SP (h) 
models demonstrate the ability of each model to discriminate between the two 
classes of peptides: SA (blue) and NSA (red).
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peptides (Fig. 4b) because 85% of the sequences in our dataset fall 
within this range, with the most prevalent length being six (Fig. 2a). 
When conditioned to generate sequences 5–10 residues long, the gen-
erative model showed a strong tendency towards decapeptides (Fig. 4b 
and Supplementary Table 5).

To stress the importance of searching through the unexplored 
regions of the peptide chemical space, we visualized the result-
ing sequences as plot points in two-dimensional space based on 
their mutual similarities calculated by Needleman–Wunsch global 
sequence alignment85. The distances among the generated hexa-
peptides (Fig. 4a, blue points) and among the peptides 5–10 residues 
long (Fig. 4b, green points) were optimized by stochastic gradient 
descent to reflect their similarity to each other (Simgen). Having all the 
sequences contained in the training set represented as a single point 
(Fig. 4a,b, red), the average similarity between the generated peptides 
and the training data (Simtrain) was used as a more important indicator 
of similarity and intentionally maintained at a lower visualization error 
(below 6%) in this plot.

The top five generated peptides with the highest SA probability 
(Fig. 4a,b) show low Simtrain but 40% or higher Simgen, which derives 
from the tendency of the generative model to converge to a single best 
peptide. This is a general characteristic of the single-criterion optimi-
zation procedures, supported by a selection pressure that ensures a 
rise in SA propensity as the algorithm progresses. Although a single 
experiment yields a homogeneous population, by studying the motifs 
and sequences across distinct experiments (Supplementary Table 7), 
we can conclude that the stochastic component of the algorithm 
ensures convergence to different peptides each time, offering diverse 
solutions for researchers to choose from. Furthermore, algorithm 
convergence resulted in the emergence of specific motifs during 
evolution (Supplementary Section 3).

The generated peptides (Fig. 4a,b) were validated using 
CG-MD simulations. Their AP was assessed through changes in 
solvent-accessible surface area (SASA) by calculating the APSASA score 
following 200 ns simulations. AP scores, as well as visual inspection 
of initial (t = 0 ns) and final (t = 200 ns) simulation frames, confirmed 
that all the generated hexapeptides and decapeptides show a strong 
tendency towards aggregation (Fig. 4c,d and Extended Data Fig. 1). 
Furthermore, interpeptide contacts (APcontact)

86 were inspected for 
additional confirmation of the aggregation behaviour. The previously 
established APSASA cut-off value (1.75; Supplementary Section 2) and the 
APcontact threshold reported in the literature (0.5 (ref. 86)) were used 
as the aggregation criteria. Together, these two metrics can indicate 

structural shapes or aggregate numbers, giving an additional insight 
into aggregation dynamics.

All the decapeptides aggregated according to the set criteria, 
which can be visually confirmed by the differences between the initial 
and final frames (Fig. 4d, Supplementary Fig. 9 and Extended Data 
Fig. 1). Furthermore, all the hexapeptides scored above the set APSASA 
cut-off, and the 200 ns frames confirmed the formation of aggregates 
(Fig. 4c, Supplementary Fig. 10 and Extended Data Fig. 1). IMGIIA with 
APcontact marginally below the threshold showed aggregation similar to 
the other hexapeptides, but with a more flat morphology (Extended 
Data Fig. 1). IMCIEW failed to meet the APSASA criterion after 100 ns; 
although it passed the APSASA threshold after 200 ns, it showed less 
pronounced differences between the initial and final frames, possibly 
indicating a lower propensity towards aggregation or a less-ordered 
supramolecular structure compared with other generated peptides.

As a control, hexapeptides and decapeptides with low propensity 
to assemble were generated; when evaluated by MD, only VNGYSPK-
WPG had APSASA above the threshold (Supplementary Figs. 9 and 10). 
A clear distinction between the distribution of positive and negative 
classes in terms of APSASA can be confirmed by the box-plot diagrams 
(Supplementary Fig. 11). Although this suggests that the AP–SP classi-
fier successfully discriminates between classes, its intended purpose 
in the generative model is not to produce sequences that lack a target 
property. Moreover, the number of NSA peptides in the training set is 
lower than the number of SA peptides, which might be an additional 
challenge for the ML model.

We experimentally validated five sequences selected based on 
their highest SA probability given by the AP–SP classifier or the high-
est APSASA scores after 100 ns simulations (Extended Data Fig. 1a), as 
follows: FMGIIF (FF6) with APSASA = 2.20; IMGIIA (IA6) with SA prob-
ability = 99.4%; IMCIEW (IW6) with SA probability = 99.0%; FATAA-
GGNMF (FF10) with APSASA = 2.27 and FGDAAGGNTT (FT10) with SA 
probability = 99.9%. The AP and formation of β-sheet-like assemblies 
was assessed in MilliQ water, at pH 7, across a range of peptide concen-
trations (5 mM to 0.039 mM). The sample’s opacity was monitored by 
optical density (OD) measurements at 600 nm (OD600). FF10, IW6, 
IA6 and FF6 exhibited an OD600 value greater than 0.1 (for water, 
OD600 = 0.036), indicating aggregation10. Specifically, FF6 and IW6 
formed cloudy suspensions. IA6 and FF10 resulted in clearer, viscous 
suspensions. FT10 remained a clear solution throughout the con-
centration range (Fig. 5a). The formation of ordered supramolecular 
β-sheet-like assemblies was confirmed by an increase in Thioflavin T 
(ThT) fluorescence at 480 nm that was more pronounced for FF10, 

Table 1 | Performance of the proposed RNN models

Metric AP SP AP–SP t-SNE SP t-SNE AP–SP

ROC AUC 0.817 (0.004) 0.864 (0.006) 0.862 (0.017) 0.772 (0.010) 0.839 (0.014)

gmean (ROC threshold) 0.742 (0.005) 0.796 (0.009) 0.798 (0.018) 0.702 (0.008) 0.759 (0.013)

F1 (ROC threshold) 0.772 (0.006) 0.833 (0.009) 0.841 (0.008) 0.688 (0.010) 0.784 (0.011)

Acc (ROC threshold) 72.5% (0.6%) 79.0% (1.0%) 79.7% (1.1%) 66.2% (0.9%) 73.9% (1.2%)

PR AUC 0.896 (0.005) 0.919 (0.003) 0.920 (0.009) 0.890 (0.004) 0.911 (0.010)

gmean (PR threshold) 0.639 (0.013) 0.768 (0.010) 0.794 (0.016) 0.582 (0.021) 0.728 (0.013)

F1 (PR threshold) 0.824 (0.006) 0.856 (0.002) 0.865 (0.008) 0.796 (0.005) 0.830 (0.008)

Acc (PR threshold) 74.6% (0.8%) 80.4% (0.4%) 81.9% (1.1%) 70.4% (0.8%) 77.0% (1.0%)

gmean (0.5) 0.739 (0.005) 0.797 (0.012) 0.801 (0.017) 0.716 (0.007) 0.760 (0.017)

F1 (0.5) 0.771 (0.006) 0.844 (0.010) 0.853 (0.006) 0.717 (0.008) 0.800 (0.014)

Acc (0.5) 72.3% (0.6%) 79.9% (1.2%) 80.9% (0.9%) 68.2% (0.8%) 75.2% (1.6%)

The average values and the standard deviation (in brackets) are calculated over an aggregated set of test folds with five different seeds in terms of AUC; the geometric mean of true-positive 
rate and true-negative rate; F1 score; and classification accuracy for the ROC, PR and standard 0.5 thresholds. The best scores per metric, when rounded to two decimal places, are marked 
in bold. McNemar’s two-sided statistical test showed a statistically significant difference between the classification probability of SP and AP–SP models (P = 0.043, n = 1,840). The test was 
conducted using predictions from the five-times-repeated testing phase, which resulted in five associated predictions for each of the 368 peptides in the dataset. 
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Fig. 4 | Peptides generated by the AP–SP-guided generative model. a,b, A plot 
depicting the similarities between the generated peptides and the sequences 
used for model training, along with the accompanying table containing the top 
five generated sequences with the highest probability of SA for hexapeptides 
(visualization errors: 5.82% for Simtrain and 23.75% for Simgen) (a) and peptides 
with lengths between 5 and 10 residues (visualization errors: 5.97% for Simtrain and 
18.89% for Simgen) (b). Simtrain and Simgen present exact calculations in terms of the 
average similarities of the generated peptides with the training data and other 

generated sequences in the same table, respectively. The full list of generated 
peptides is given in Supplementary Table 6. c,d, AP of the generated peptides 
was assessed using CG-MD simulations where the initial (0 ns) and final (200 ns) 
frames are shown for an example hexapeptide (FMGIIF) (c) and decapeptide 
(FATAAGGNNF) (d). e, Comparison of amino acid distributions within the training 
dataset (n = 9,539 amino acids), generated sequences with six residues (n = 108 
amino acids) and generated sequences with 5–10 residues (n = 251 amino acids).
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followed by FF6, IA6 and IW6 (Fig. 5b), as well as a characteristic peak in 
the Fourier transform infrared (FTIR) spectra at 1,624 cm−1 for hexapep-
tides and 1,626 cm−1 for FF10, indicating β-sheet hydrogen-bonding pat-
terns (Fig. 5c). The different fluorescence emission intensities (Fig. 5b) 
could be due to the varying binding affinities of ThT for specific struc-
tural and chemical features within amyloid-like fibrils87, suggesting 
different supramolecular morphology for each peptide. Fluorescence 
microscopy provided a visual confirmation of ThT binding to peptide 
aggregates, from bundles of fibres for IA6 to larger aggregates of 
undefined morphology for FF6, IW6 and FF10 (Supplementary Fig. 17), 
confirming amyloid-like aggregation. Transmission electron micros-
copy (TEM) showed entangled nanofibres for FF6 and IA6, fibrillar 
networks for FF10 and amorphous aggregates for IW6 (Fig. 5d). On the 
contrary, FT10 did not show a tendency to form β-sheet-like structures, 
as evidenced by OD600, FTIR and fluorescence (Fig. 5), indicating a 
lack of aggregation or SA. However, to rule out its assembly potential, 
further studies are required under different solvent and pH conditions.

The propensity of peptides to form supramolecular structures is 
influenced by their sequence, which determines the nature of interac-
tions that guide their assembly and by the experimental conditions5,88. 
Even small changes can drastically affect the aggregation behaviour 
and morphology of supramolecular assemblies89. Therefore, explor-
ing a wider range of peptide concentrations, buffer compositions, pH, 

temperatures and ionic strengths will complement this preliminary 
screening of aggregation behaviour and reveal the full potential these 
sequences might have as peptide materials.

These findings indicate that our model can be effectively used in 
generative AI approaches to create sequences characterized by diverse 
compositions and a strong propensity for SA, as well as maintaining 
minimal resemblance to previously reported sequences in the literature 
and the current dataset. This is further supported by the comparison 
of the amino acid distribution between the training and generated 
data (Fig. 4e). In this context, our model offers a means to explore 
novel regions of the chemical space rather than simply reproducing 
sequences encountered during the training process.

Conclusion
The challenge of identifying new peptide-based supramolecular materi-
als on the basis of their sequence still persists. A thorough examination 
of compounds residing in a specific part of the chemical space consti-
tutes an NP-hard combinatorial challenge, which remains infeasible 
for sequences longer than three residues. Although experimental 
discovery complemented by MD simulations remains the prevailing 
approach for uncovering new self-assembling peptides, such methods 
are burdened by high computational costs, require substantial time 
and need highly skilled experts.
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Fig. 5 | Experimental validation of selected generated peptides. a, Heat map 
representing the sample opacity, indicating aggregation or assembly. Each 
sample (FF6, IA6, IW6, FF10 and FT10) was measured across a concentration 
range from 5 mM to 0.039 mM. The opacity, measured as OD600, increases 
with concentration for all the peptides, with the exception of FT10. b, ThT 
fluorescence intensity indicating the formation of supramolecular β-sheets. 
Data are presented as mean values (n = 3 independent experiments) ± standard 

deviation in the bar charts, overlaid by individual measurements in the dot plots. 
c, ATR-FTIR spectra displaying the characteristic peak for the hydrogen-bonding 
pattern in β-sheets at 1,624 cm−1 for FF6, IA6 and IW6 and 1,626 cm−1 for FF10.  
d, TEM images showing fibrillar morphologies for FF6 (scale bar, 2 μm), IA6 (scale 
bar, 2 μm), FF10 (scale bar, 1 μm) and amorphous aggregates for IW6 (scale bar, 
1 μm) at a concentration of 5 mM.
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The premise of this research is that longer peptides can be rep-
resented by their simpler building blocks (amino acids, dipeptides 
and tripeptides) whose properties may be used to predict their SA 
status. Five sequence-to-assembly RNN-based prediction models were 
developed by varying the architecture, input data and training param-
eters. Using precomputed AP scores obtained through the use of slid-
ing windows that were 1, 2 or 3 residues in length, along with specific 
physicochemical properties, the models were trained on experimental 
data curated from the literature. This enabled the models to analyse 
sequences of arbitrary length without the need for extensive AP score 
calculations using MD.

The hybrid AP–SP model discriminated between SA and NSA pep-
tides with a high F1 score of 0.865 and its ability to generalize knowledge 
to regions of the chemical space that are unexplored by the existing 
datasets was put to test in a generative model. The validation of the gen-
erated peptides (ten SA and ten NSA) using MD simulations confirmed 
the model precision of 90–100%. The ground-truth experimental vali-
dation was conducted for three hexapeptides and two decapeptides. 
OD, attenuated total reflectance (ATR)-FTIR, ThT assay and TEM (Fig. 5) 
measurements confirmed that four out of five peptides self-assemble, 
which is consistent with the accuracy of the AP–SP classifier (81.9%) 
used in the ML-guided generative model.

Consequently, the generative model outperformed human and AI 
experts with 25% to 35% greater accuracy10. Given the resource-intensive 
nature of the existing methods for SA inference, the ML models can 
pinpoint sequences with a high propensity towards SA while requir-
ing substantially less time and fewer resources. We believe that the 
accuracy of the generative model demonstrates that the developed 
ML models successfully captured the underlying rules stored in the 
experimentally validated data and, as such, present a way to comple-
ment human intuition in the discovery of peptides with a high prob-
ability to self-assemble and offer opportunities for the development 
of intelligent and self-driving laboratories in the future that will allow 
for a faster and sustainable discovery of new materials.

Methods
The source code for this research was written in the Python programming 
language (version 3.10.13).

Dataset
A total of 368 peptides with validated SA behaviour were extracted from 
published articles, including 249 SA and 119 NSA sequences. The dataset 
and details on the specific methods used for the experimental valida-
tion of peptide SA are provided in Supplementary Data 1, as well as in 
the cited literature. Peptide SA is studied mainly in sequences shorter 
than 24 residues90 and, consequently, this is the maximal sequence 
length in the dataset (Fig. 2a).

Sliding window approach to feature extraction
The AP values for the input to the models (amino acids, dipeptides and 
tripeptides as subsets of the peptide sequence) were obtained using a 
sliding window of the corresponding size. When amino acids were used, 
the array of extracted AP values was of the same length as the peptide 
under consideration. When dipeptides or tripeptides were examined 
as building units of the original sequence, the arrays were shorter by 
one or two entries, respectively. The sliding window of size 1—analysing 
physicochemical descriptors of individual amino acids—was applied to 
obtain SP feature vectors for the SP models, as described elsewhere69.

Scaling of input values
The AP values for amino acids, dipeptides and tripeptides were 
obtained from the literature3,27,60, and are not directly comparable 
in terms of scale and the underlying interpretation. The AP scores of 
dipeptides and tripeptides represent the percentage of the surface of 
a peptide exposed to water before and after aggregation, whereas the 

AP values of amino acids represent the energy released during the for-
mation of supramolecular structures and can assume negative values. 
In addition to AP, 94 physicochemical properties were used as amino 
acid descriptors69. To boost performance and mitigate problems that 
may arise due to the varying magnitudes among different parts of the 
input data70,71, we used min–max scaling and mapped the values of each 
feature into the range [−1, 1].

Sequence padding for accelerated training
Training the model in batches accelerates the process and enables 
faster convergence91. However, this requires that all the sequences in a 
batch are padded to an equal length. The padding value was arbitrarily 
set to 2, meeting the requirement of being outside the feasible [−1, 1] 
value range of the input features. The padded values were masked for 
processing in ML models to ensure that the padding is ignored and 
does not affect the inference.

Initial settings and callbacks during training
The training was limited to 70 epochs. The batch size was set at 600 to 
ensure that all the peptides were processed in a single batch, thereby 
obtaining the fastest speed of operation and smoother gradients. The 
initial learning rate was set to 0.01 and was reduced by approximately 
10% per epoch (multiplied by e−0.1), starting from the tenth epoch 
onwards. Only the model with the lowest validation loss was saved.

Hyperparameter optimization
A nested cross-validation consisting of five folds in the inner and outer 
loops was used to determine the best hyperparameters and prevent 
information leakage, which could result in overestimated capabili-
ties of the models. This indicates a detailed optimization procedure 
that yields five repeated measurements (Fig. 2d). The outer loop of 
the nested fivefold cross-validation split the dataset into (1) an outer 
training and validation fold and (2) an outer test fold, whereas the inner 
loop additionally divided the outer training and validation fold into (3) 
an inner training fold and (4) an inner validation fold. The models were 
trained using each inner training fold and all the possible combinations 
of hyperparameters chosen for the grid search. The hyperparameters 
that yielded a model with the lowest loss averaged over all the inner 
validation folds were applied for training and testing of the model with 
the outer folds ((1) and (2), respectively).

Architecture tuning
The submodels that used the AP values applied two LSTM layers with 
five units to the input data, with the first layer being bidirectional. These 
submodels also encompassed a dense layer with 64 or 128 units, fol-
lowed by the scaled exponential linear unit activation. On the contrary, 
the submodels that processed the SP values used two one-dimensional 
convolutional layers, each having five filters and a kernel size of 4 or 6. 
This presents a notable reduction in the number of filters compared 
with previous research on therapeutic peptides69, which we attribute 
to the smaller dataset. The kernels were convolved over the peptides’ 
spatial dimension to produce output tensors. The subsequent appli-
cation of a bidirectional LSTM layer with 32, 48 or 64 units enabled 
capturing intricate dependencies within the peptide sequences. The 
models that used lower-dimensionality descriptors in the feature space 
compensated for the lack of information available to characterize the 
data with a larger output-space size.

Overfitting control and final predictions
A 50% dropout regularization was applied to the final layer of all submod-
els (Fig. 3a–c) as a mechanism to prevent overfitting92. Because relatively 
complex models were applied to a small dataset, a large dropout percent-
age was necessary to prevent the models from overly adapting to the 
distribution of the training data. Prevalent dropout values of 10%, 20% 
and 30% from the literature92 were also examined; however, they were not 
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part of the hyperparameter optimization procedure. The sigmoid activa-
tion function was applied to the final layer of each model to yield a value 
between 0 and 1, representing the probability of an input sequence exhib-
iting SA. The small variations in true-positive, true-negative, false-positive 
and false-negative predictions (Supplementary Fig. 12) proved that 
overfitting was successfully avoided.

Configuration of models used for benchmarking
All the deep-learning models taken from ref. 83 were trained with an 
initial learning rate of 0.2, a vocabulary size of 21 (representing the 
number of amino acids), a maximum peptide sequence length of 24 and 
a batch size of 1,024. Only the MLP model was trained for 50 epochs, 
whereas others were trained for 100. A grid search with nested fivefold 
cross-validation was used to optimize the RF hyperparameters for 
each split separately. It explored the number of trees in the forest with 
values set to 100, 200, 300, 400 and 500, and tried the Gini, entropy 
and log-loss splitting criteria. The maximum depth of the trees was 
evaluated with values of 3, 6, 9, 12 and unlimited depth, whereas the 
minimum number of instances required to split an internal node was set 
to 2, 5 and 10. Additionally, the minimum number of instances required 
to be at a leaf node was tested with values of 1, 2 and 4.

Generative model
The generative approach utilized a genetic algorithm from another 
work84 with the proposed hybrid AP–SP SA prediction model serving as 
a fitness function. The initial population of 50 sequences contained pep-
tides of varying lengths (from 3 to 24 residues) and was constructed by 
randomly sampling a set of 20 proteinogenic amino acids. In each of the 
30 algorithm iterations, 30 new sequences were created by performing 
tournament selection with three individuals and applying a single-point 
crossover. Each sequence had a 5% chance of being mutated using four 
equiprobable mutations: amino acid insertion, deletion, swap and 
change. The algorithm was conditioned to keep the population diverse 
and favour specific peptide lengths (6 in the first case and 5–10 in the 
second case) by introducing two penalty factors that measured (1) the 
average similarity of a peptide’s amino acid distribution to the other 
sequences in the population and (2) the difference between the length 
of the peptide and the preferred length range.

MD validation of the generated peptides
The validation of the AP of the generated peptides was performed using 
MD, as described in previous studies3,10,27,46. Briefly, Protein Data Bank 
coordinate files for MD studies were prepared in PyMOL v1.2. Trans-
formation of all-atom coordinate files into CG representations was 
achieved using the martinize.py script93. The input for this script was 
defined using Martini force field v. 2.2P with the secondary-structure 
input set to the extended β-sheet (the ‘E’ symbol in the Dictionary 
of Secondary Structure of Proteins)3,27,46. Simulations were carried 
out in polarizable water by converting CG water with the triple-w.py 
program94. To maintain a consistent total amino acid count (approxi-
mately 1,200 amino acids) relative to the box size, each simulation 
was performed by the random placement of 200 hexapeptides or 120 
decapeptides in a 20 × 20 × 20 nm3 cubic system, resulting in final 
concentrations of 0.042 M and 0.025 M for hexapeptides and deca-
peptides, respectively. Each simulation underwent a three-step energy 
minimization, a two-step equilibration and two separate dynamics 
runs lasting 100 ns and 200 ns each. The initial peptide setup was mini-
mized before the addition of water. After adding polarizable water, a 
‘soft-core’ minimization lasting 20,000 steps of 20 fs was performed. 
The system was then minimized again using standard steepest descent 
algorithms for 50,000 steps with shorter 10 fs time steps. Equilibration 
was conducted in two phases: an initial short V-rescale thermostat 
and Berendsen barostat isotropic equilibration, followed by a more 
extended Nose–Hoover thermostat and Parrinello–Rahman barostat 
in a semi-isotropic system. This approach was adopted to combine the 

stability of the former method with the precision of the latter method, 
providing an accurate thermodynamic ensemble95. The V-rescale/
Berendsen phase had a time step of 6 fs and 15,000 steps, whereas 
the Nose–Hoover/Parrinello–Rahman phase had 25 fs time steps and 
500,000 steps. The dynamics runs lasted for 100 ns or 200 ns each, 
using 20 fs time steps. The total wall time for each simulation—from 
system preparation to the conclusion of the dynamics run—was approx-
imately 5 h for 100 ns and 7.5 h for 200 ns simulations per peptide 
system on 10 Intel Xeon E5-2690v3 processors. The GROMACS SASA 
tool96 was used to calculate the APSASA scores. APcontact score calculations 
were performed using interpeptide distances to score aggregation86. 
On constructing a matrix of paths that visit each peptide in the system 
exactly once, the weighted-average distance between two peptides for 
each path was calculated, after which the maximum value was taken 
as APcontact. Distances were weighted using equation (1), where x rep-
resents the closest Euclidean distance between two beads in distinct 
peptides of interest. The simulations were carried out using GROMACS 
v. 2023.2-IMPI2021.5 gcc13.1 p3.10.5.

w(x) =
⎧⎪
⎨⎪
⎩

1 x < 4 Å

e[−(x−4)] 4 Å ≤ x ≤ 12 Å

0 x > 12 Å

(1)

Pearson’s and Spearman’s correlation coefficients
The sigmoid outputs from the models were assigned to a binary 
class using different classification thresholds determined during the 
hyperparameter optimization on the validation folds, as well as a fixed 
threshold of 0.5. These binary classes were compared with actual pep-
tide labels that signify SA status. The corrcoef function from the numpy 
library (v. 1.23.5) was used to obtain the Pearson product–moment 
correlation coefficients, whereas the Spearman’s correlation coeffi-
cient was assessed using the spearmanr function from the scipy.stats 
package (v. 1.9.3).

Consensus motifs of generated peptides
Multiple-sequence alignment was performed using Clustal Omega97 
through the EMBL-EBI’s online service98. Data were analysed through 
Jalview99, where the BLOSUM62 colouring was used to show sequence 
similarity. The motifs were derived from the phylogenetic tree. The 
sequence logo graphs were generated by entering the FASTA notation 
into the WebLogo online tool100.

Experimental validation
The selected peptides were custom synthesized by GeneCust and are 
as follows: FMGIIF (FF6; Mw, 727.0 Da; purity, 96.29%), IMGIIA (IA6; 
Mw, 616.88 Da; purity, 95.51%), IMCIEW (IW6; Mw, 794.06 Da; purity, 
96.04%), FATAAGGNMF (FF10; Mw, 986.22 Da; purity, 95.39%), FGDAA-
GGNTT (FT10; Mw, 910.02 Da; purity, 98.79%). For all the peptides, 
salt exchange was performed using 10 mM HCl to remove any traces 
of trifluoroacetic acid. Thioflavin T (ThT) and deuterium oxide were 
purchased from Sigma-Aldrich.

Sample preparation. The lyophilized powder of each peptide was 
weighed and dissolved in 10 mM NaOH prepared in MilliQ water or 
deuterium oxide (Sigma-Aldrich). The pH was adjusted to 7 with HCl 
prepared in MilliQ water or deuterium oxide. The samples were either 
used as prepared or diluted for further characterization.

Optical density. Sample opacity was used as an indicator of aggrega-
tion or assembly. Here 100 μl of each sample was added to a 96-well 
plate with concentrations ranging from 5 mM to 0.039 mM following 
twofold serial dilutions and the absorbance was recorded at 600 nm 
(OD600, Hidex Sense microplate reader).
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ThT binding assay. ThT binding assay was performed using a peptide 
concentration of 5 mM for all the samples. The samples were incubated 
for 15 min with a ThT stock solution prepared in methanol to a final 
concentration of 25 μM of ThT. Then, 100 μl of each sample was added 
to a 96-well plate and excited at 450 nm, and the emission spectra were 
recorded at 480 nm (Tecan Infinite M200 PRO microplate reader).

FTIR. Hydrogen-bonding patterns characteristic of peptide SA were 
investigated using ATR-FTIR. The ATR-FTIR spectra of peptides were 
recorded in deuterium oxide (Sigma-Aldrich) using an Agilent Tech-
nologies Cary 630 FTIR instrument (Sigma-Aldrich) in the range of 
650–4,000 cm−1 with a resolution of 16 cm−1.

Fluorescent microscopy. The peptides (5 mM) were stained with 25 μM 
ThT. Then, 1 μl of the peptide solution was dropped on a glass slide and 
covered with a coverslip. Microscopy was performed using an Olympus 
IX73 inverted fluorescent microscope equipped with differential inter-
ference contrast and fluorescence optics (mirror units; U-FUNA (blue): 
EX360-370, DM410, EM420-460; U-FBWA (green): EX460-495, DM505, 
EM510-550; and U-FGW (red): EX530-550, DM570, EM575IF (Olympus)). 
The images were acquired with an Olympus XM10 monochrome camera, 
U-FBWA (green) filter, ×60 magnification with 1.42-numerical-aperture 
oil-immersion objective and CellSens Standard 2.3 software. The images 
were analysed using ImageJ software (v. 1.54).

TEM. TEM images were obtained using a JEOL JEM-1400Flash 
microscope equipped with a 20 MP complementary metal–oxide–
semiconductor XAROSA camera (EMSIS). The 5 mM samples were 
deposited on copper grids covered with Formvar (Structure Probe) 
and dried before imaging.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The datasets used in this research, along with pretrained models in 
the H5 format, are available via GitHub at https://github.com/mnjir-
jak/ml_peptide_self_assembly (ref. 101). The MD coordinates for the 
initial and final frames of the simulations are available via figshare 
at https://figshare.com/s/463150e29f478cc5e25e. We also provide a 
workbook (Supplementary Data 1) detailing the self-assembling and 
non-assembling sequences taken from the literature along with the 
DOI and characterization methods, and raw fluorescence microscopy 
and TEM data (Supplementary Data 2). Source data are provided with 
this paper.

Code availability
The source code for this research is available via GitHub at https://
github.com/mnjirjak/ml_peptide_self_assembly (ref. 101).
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Extended Data Fig. 1 | Comparison of AP scores and the CG simulation images 
for the generated hexa- and decapeptides with high SA probability. a,b The 
APSASA (a) and APcontact (b) scores for CG simulations of 100 ns (in blue) and 200 ns  
(in orange). c,d The visual representation of the initial frame (t = 0 ns) and the 
final frames of two independent simulations at t=100 ns and t=200 ns for the 

hexapeptides (c) and decapeptides (d) obtained by the generative model.  
The red and white spheres represent the main and side chain beads, respectively. 
Horizontal red lines are drawn to show the thresholds for aggregation, 1.75 for 
APSASA and 0.5 for APcontact.
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Extended Data Table 1 | Benchmarking the models: Comparison with the state-of-the-art

The average and standard deviation (in brackets) is given for every model that was tested with 5 different seeds. The benchmarking models Transformer, RNN, LSTM, Bi-LSTM, MLP, and RF 
were compared against AP-SP (PR thr) on the aggregated set of peptides using the McNemar’s two-sided test and the resulting p-values are marked in bold where a significant difference 
(< 0.05) exists. The comparison in the lower part of the table is given for 20 experimentally verified pentapeptides, where human and AI-experts participated with their predictions. The 20 
verified peptides, although included in our dataset, were consistently allocated to the test fold, ensuring a rigorous setup that aims to fairly estimate and compare the performance of the 
models. The best scores per each metric, when rounded to two decimal places, are marked in bold. 
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