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Abstract

Pre-training is notoriously compute-intensive
and academic researchers are notoriously
under-resourced. It is, therefore, commonly
assumed that academics can’t pre-train models.
In this paper, we seek to clarify this assump-
tion. We first survey academic researchers to
learn about their available compute and then
empirically measure the time to replicate mod-
els on such resources. We introduce a bench-
mark to measure the time to pre-train models
on given GPUs and also identify ideal settings
for maximizing training speed. We run our
benchmark on a range of models and academic
GPUs, spending 2,000 GPU–hours on our ex-
periments. Our results reveal a brighter pic-
ture for academic pre-training: for example,
although Pythia-1B was originally trained on
64 GPUs for 3 days, we find it is also pos-
sible to replicate this model (with the same
hyper-parameters) in 3x fewer GPU–days: i.e.
on 4 GPUs in 18 days. We conclude with a
cost–benefit analysis to help clarify the trade-
offs between price and pre-training time. We
believe our benchmark will help academic
researchers conduct experiments that require
training larger models on more data. We fully
release our codebase at: https://github.c
om/apoorvkh/academic-pretraining.

1 Introduction

AI research today is dominated by large pre-trained
language and vision models, which are notoriously
compute-intensive to produce. Even smaller and
older models have large training costs: Pythia-1B
required 64 GPUs for 3 days (Biderman et al.,
2023) and Roberta required 1,000 GPUs for 1 day
(Liu et al., 2019). A ubiquitous complaint among
academic labs is that research on new architectures,
data diets, and training procedures is prohibitively

∗ Our paper title “$100k or 100 days” is drawn from the
stark comparison (Sec. 4.1) between replicating Pythia-1B
with 4 H100 (8 days, $130k) or 2 3090 GPUs (108 days, $4k).

and increasingly expensive. As a result, groups
often opt out of conducting controlled experiments
involving pre-training.

Such decisions come at a cost to the field as
a whole. Our research progress would be more
competitive and diverse if the many smaller groups
could also conduct these experiments. Using an
example from computer vision: although the sig-
nificant gains of the CLIP model (Radford et al.,
2021) were initially credited to its contrastive loss,
more controlled experiments later revealed that this
was an over-attribution (Tschannen et al., 2023).
The three-year lag between the initial, successful
model and the more principled follow-up studies ar-
guably led the field to exploit too soon, rather than
continually explore more architectures and training
objectives.

While academic research labs are the ideal place
to pursue such principled analyses, in practice,
there is little common knowledge about the costs of
pre-training in academia. Given certain GPUs, how
many days would pre-training take? Which types
of models could we train, if we really wanted to,
and which are unambiguously unattainable? This
lack of transparency is, itself, a barrier to academic
research. It makes it difficult for students and their
PIs to pursue more ambitious experiments, propose
grants with realistic budgets, and prioritize their
time. A clearer understanding about the resources
that are available to our community—and the op-
timizations that can be made in pre-training—can
enable us to make more informed decisions about
where to focus our funding and intellectual energy.

In this paper, we seek to provide transparency
about the feasibility of pre-training models given
the current state of academic hardware. In all:

1. We conduct a survey and learn a common
range for academic compute: namely, 1–8
GPUs that can be used for days (typically) or
weeks (on the higher-end) at a time.
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2. We empirically measure and report the time
necessary to replicate several models on aca-
demic GPU configurations. We optimize per-
formance by searching a space of efficient
training methods. To develop the insights in
our paper, we benchmark nearly 3,000 con-
figurations in our search space and spend ap-
proximately 2,000 GPU–hours to do so.

3. We find that we are able to pre-train models
using our optimizations and current hardware
with 3x less compute than original reports.
For example, Pythia-1B can be trained in 18
days on 4 A100 GPUs (i.e. 72 GPU–days,
rather than 192). In many cases, our optimiza-
tions even enable training experiments that are
otherwise entirely infeasible.

4. We conduct a cost–benefit analysis to help de-
termine which hardware is best (enabling the
fastest pre-training) given a certain financial
budget. For example, a machine with those 4
A100 GPUs will cost $85k. It might be more
effective to buy 2 H100 GPUs at $60k (which
can train Pythia-1B in the same time).

We fully release our codebase and artifacts—
which can be easily extended to test new models,
training methods, and GPUs—so that our proce-
dure can be used to benchmark more custom hard-
ware and model configurations. Our benchmark is
inexpensive to run and can result in large reduc-
tions in training time (or enable training entirely),
especially on few GPUs.

2 What is “Academic Hardware”?

It’s generally agreed that conducting NLP research
is increasingly challenging on “academic hard-
ware”, but there is no single definition of what
academic hardware is. As researchers, we often are
in the dark about the type of resources we should
have and what our peers have.

We conducted a survey asking AI researchers
in academia about their compute budgets for re-
search experiments. We shared our survey for
3 weeks in April 2024 by word-of-mouth, Twit-
ter, and academic (inter-university) Slack chan-
nels. This procedure yielded responses from 50 re-
searchers across 35 international institutions. PhD
students accounted for the majority (approx. 60%)
of our respondents.

Our survey asks about resources available for
an individual or per-project basis, rather than for
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Figure 1: Per-experiment availability of Data Center
GPUs (typically 80 GB A100s). Showing how long (at
most) respondents can use N GPUs for.

measurements aggregated across entire labs or de-
partments. We report some of our findings here,
and include the full list of survey questions, re-
spondent demographics, and remaining analyses
in Appendix A.

Availability of GPUs. While cloud compute is
often proposed as a flexible way for academics
to scale their compute resources, we find that, in
practice, very few actually use this. In fact, the
vast majority (85%) of respondents reported zero
budget for cloud compute. Instead, academic re-
searchers typically rely on on-premises compute
provided by their institution. Owning hardware
simply tends to be more cost-effective than renting:
e.g. it costs less than $200K to own an 8 x 80 GB
A100 machine, but ~$650K to reserve on AWS
(p4de.24xlarge) for 5 years.

That said, most academics are not satisfied with
the compute provided by their institution. 66%
of respondents rated their satisfaction with their
compute clusters at less than or equal to 3 out of
5 (indicating that some desired experiments are
prohibitively expensive). These trends are similar
to those reported in Lee et al. (2023).

Several respondents mentioned a particular dis-
satisfaction with long wait times for allocating
GPUs and limited connectivity between nodes.
One respondent said the wait times can “sometimes
be up to 2 to 3 days” and another emphasized they
are “a lot longer during deadlines”. 41% of respon-
dents stated that they had no multi-node support
in their institute cluster. Even if universities have
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multiple nodes, “there is no inter-node connectiv-
ity” for some, “which is a bummer for fitting any
greater than 7B-parameter models”.

We further surveyed our respondents’ resources,
measuring both the number and types (i.e. Desktop,
Workstation, and Data Center) of GPUs available
to them. This distinction of types is important,
because, among other specifications, they most
prominently differ in price, memory capacity, and
processing power. For example, considering the
most popular GPU models reported, the RTX 3090
Desktop GPU costs $1,300 today and features 24
GB memory and 70 TFLOPs/sec of 16-bit compute.
The A6000 Workstation GPU costs $4,800 with
48 GB memory and 150 TFLOPs/sec in compute.
And, the A100 Data Center GPU costs $19,000
with 80 GB memory and 310 TFLOPs/sec in com-
pute.

50% more respondents reported access to (the
more expensive) Data Center GPUs than to Desk-
top or Workstation GPUs. In Fig. 1, we report
the amount of time for which researchers can allo-
cate Data Center GPUs per experiment. We find
that the typical academic researcher can use 4 such
GPUs for days at a time. And, at the higher-end,
some academics can use 4 for weeks and 8–16 for
days at a time. We observe similar trends for the
Desktop and Workstation GPUs, reported further
in Appendix A.

We also notice a disparity in resources region-
ally and by type of institution. A respondent from
Oman said “finding GPUs in the Middle East is
challenging”. At the other extreme, a Swiss respon-
dent mentioned there will soon be “[10,000]1 H100
GPUs for all Swiss universities under the SwissAI
initiative”. Finally, a professor at an American lib-
eral arts college elaborated on their particular case:
their institution did not have a compute cluster at
all and instead had 4 RTX 3090 GPUs in a desktop.

Use cases. Most academics (70–80%) reported
using GPUs for purposes such as fine-tuning, infer-
ence, and training small models. 57% also report
that they use GPUs for model analysis. 17% re-
port running pre-training experiments for models
with less than 1B parameters. Based on our poll on
user satisfaction, the majority of respondents want
to and indeed would run more expensive types of
experiments, if only they had the hardware for it.

1Respondent originally reported “1,000”, but we found
the quantity was actually 10,000 upon further verification
(https://www.swiss-ai.org).

Takeaways. Our survey suggests a common
range for what constitutes “academic hardware”
today: 1–8 GPUs—especially RTX 3090s, A6000s,
and A100s—for days (typically) or weeks (at the
higher-end) at a time. 10% of our respondents
also report access to H100 GPUs: i.e. the newest-
generation Data Center GPUs. In the following
section, we investigate how long training takes on
several types of GPUs and use this range for “aca-
demic hardware” in our investigations.

3 Measuring Training Time

Although we know some model and GPU proper-
ties (such as floating-point operations, processing
power, etc.), these metrics are not commonsense
for practitioners. A simple open question remains:
how long will it take to train my model on my
compute?

In this section, we determine the time to pre-
train (and replicate) several models on different
academic GPU configurations. We report optimal
training times for all tested models and GPUs in
Table 1 (and corresponding configurations in Ap-
pendix J). We provide further results in Sec. 4.

We use analytic (Sec. 3.1) and empirical
(Sec. 3.2) approaches in our investigation. In our
empirical approach, we test both naive training
settings, as well as with combinations of efficient
training methods (Sec. 3.2.1), to identify optimal
configurations with minimal training time.

We analyze several well-known language and vi-
sion models (with between 100M–7B parameters):
Transformer encoders [Roberta (Liu et al., 2019)]
and decoders [Pythia (Biderman et al., 2023)]; state
space models [Mamba (Gu and Dao, 2023)]; con-
volutional networks [ConvNeXt (Liu et al., 2022)];
and vision transformers [ViT (Dosovitskiy et al.,
2021)]. In particular, these models report sufficient
training details (architecture and hyper-parameters;
Appendix C) for us to emulate replication (i.e. train-
ing with the same batch size, for the same num-
ber of steps, etc.). We use these original hyper-
parameters whenever possible. Because we focus
on characterizing which types of experiments are
generally accessible to the average academic, we
exclude any efficiency method that changes the
training recipe (and that could change convergence)
or requires extensive implementation-level modifi-
cations.

3
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RTX 3090 (24 GB) A6000 (48 GB) A100 (80 GB) H100 (80 GB)
Model Size 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Pythia

160M 41 18 6 3 29 15 7 4 14 7 3 2 7 4 2 1
410M 151 69 35 19 105 49 26 15 50 25 12 6 25 13 6 3

1B 370 109 77 30 152 72 40 22 72 36 18 9 34 16 8 4
2.8B 1515 1040 485 177 934 292 150 88 342 148 71 35 166 77 31 15
6.9B — 7157 1769 1250 — 1110 819 264 — 488 170 77 — 220 69 32

RoBERTa 350M 1070 559 266 170 826 423 213 114 394 197 100 50 175 88 44 23
Mamba 2.8B 1992 1217 444 304 1414 483 259 193 500 263 133 67 277 145 74 37

ConvNeXt 390M 154 133 49 27 168 68 33 22 59 30 16 8 31 16 8 5
ViT 325M 156 87 45 29 111 56 31 16 53 26 14 7 27 14 7 4

Table 1: Empirical training times (in days) for model–GPU combinations using optimal settings discovered in
Sec. 3.2. “—” indicates infeasibility with all efficient methods.

3.1 Analytically Inferring Training Time

As a first step, we use basic measurements to deter-
mine training time. That is, just using simple model
properties and what we know about hardware from
manufacturers, how long would pre-training take
on various realistic academic setups?

We estimate pre-training time based on total
training compute (FLOPs) for models and through-
put (FLOPs/sec) for GPUs (and list these in Ap-
pendix E). We count the FLOPs for a model in one
training step (i.e. forward and backward pass, given
a single-element input batch), and linearly extrapo-
late by batch size and training steps to determine
the total training FLOPs. We use GPU throughput
values from hardware specifications and assume
the precision of the original model. Finally, we can
directly infer training time from these FLOPs and
throughput (FLOPs/sec) measurements.

This inference is an estimate, because existing
automatic methods for counting FLOPs are approx-
imators (e.g. counting only matrix multiplication
operations). FLOPs also do not account for param-
eter update time. Finally, this is a highly simplified
model of GPUs and neural networks: other fac-
tors create training bottlenecks, such as memory
bandwidths and caches of GPUs, and architectures
and operations of models. By ignoring these bottle-
necks, we unrealistically assume 100% utilization
of GPU cores. A true measurement becomes infea-
sible using a simple analytic approach, necessitat-
ing our empirical approaches (below).

3.2 Empirically Measuring Training Time

Our empirical measurement involves three steps:

1. Maximum batch size. We identify the largest
batch size (by power of two) that will fit in

GPU memory—approx. maximizing through-
put (NVIDIA, 2023)—by incrementing the
batch size (and computing a training step) un-
til we run out of memory. We limit this value
to our desired batch size for replication (Ap-
pendix C).

2. Training step time. We compute and mea-
sure training steps using the maximum batch
size from (1). We note that this maximum size
may be smaller than the desired value for repli-
cation. We perfectly compensate using gradi-
ent accumulation: i.e. by computing a com-
mensurate number (N = desired/maximum)
of forward/backward passes and accumulat-
ing their gradients between parameter up-
dates. We measure the durations of 3 such
forward/backward passes and 3 parameter up-
dates, and extrapolate to the duration of a train-
ing step: i.e. for N passes and 1 update. We
also run one additional pass and update ahead
of this measurement as a warm-up.

3. Overall training time. We linearly extrap-
olate the training step time from (2) by the
total number of training steps (Appendix C)
to estimate the overall training time.

We first benchmark naive settings: i.e. we
load and train models with their replication hyper-
parameters and in an entirely off-the-shelf/default
manner. We then investigate combinations of sev-
eral efficiency methods (Sec. 3.2.1) to further opti-
mize training speed. We use randomly generated in-
put data (e.g. language tokens or image pixels) for
our benchmark. We include further details about
our software implementation and hardware specifi-
cations in Appendix B.
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3.2.1 Efficient Training Methods
We consider several optimizations, which we cat-
egorize as free-lunch or memory-saving methods
(described below). Free-lunch methods are strictly
beneficial. In contrast, memory-saving methods
may have multiple options, and entail up to 22 com-
binations (Appendix F) in our experiments. It is
thus more difficult to select a combination of such
methods that is guarenteed to improve (or at least
not hurt) training time. We benchmark the resulting
search space (i.e. combinations of memory-saving
methods, with free-lunch methods always enabled)
and report the minimum training time in our results.

Free-lunch methods. These methods improve
throughput and might reduce memory consump-
tion, with no cost to the end-user. (Of course, this
“lunch” actually comes at the cost of several years
of deep learning software and hardware R&D.)

1. We compile the model (Ansel et al., 2024):
automatically building GPU-optimized, low-
level (Triton) code from high-level (PyTorch)
operations.

2. We use off-the-shelf custom kernels as drop-
in replacements for PyTorch modules. These
kernels are low-level implementations of neu-
ral network layers (in Triton or CUDA) that
are handwritten for performance improve-
ments beyond what a compiler can offer. At
the time of our experiments, we primarily use
FlashAttention (Dao et al., 2022; Dao, 2024)
in our Transformer models and SSM-specific
kernels for Mamba (Gu and Dao, 2023).2

3. We perform matrix multiplications and con-
volutions in TF32 mode (Stosic, 2020): ig-
noring the least significant 13 bits of 32-
bit floating-point numbers internally dur-
ing scalar multiplications (but not accumu-
lations). This results in sizable improvements
to throughput with no effect on convergence.

Memory-saving methods. The following meth-
ods reduce memory consumption at a cost to speed.

1. Activation checkpointing (Beaumont et al.,
2019–2024): One can save just a subset of
activations (i.e. checkpoints) during the for-
ward pass (saving memory) and re-compute

2FlexAttention (He et al., 2024) and the Liger Kernel col-
lection (Hsu et al., 2024) are also prominent, more recent
examples.

missing activations from the nearest check-
point and as needed during the backward pass
(spending compute).

2. Model sharding (Rajbhandari et al., 2019;
Zhao et al., 2023): Typically, a full copy of
all model states (including weights, gradients,
and optimizer states) are stored on each GPU.
Instead, one can eliminate redundant copies
by dividing (or “sharding”) these states among
the GPUs. Then, when a state is needed dur-
ing training but missing from a GPU, that
state will be temporarily copied from its cor-
responding GPU. Although this method can
dramatically save memory on each GPU, it
can also incur a cost via communication time.

3. Offloading (Rajbhandari et al., 2019; Ren
et al., 2021): To conserve even more GPU
memory, one can offload optimizer states
and model parameters into system memory
(RAM). These states will be communicated
to the GPUs as needed. This method can in-
cur a large communication cost due to low
RAM–GPU bandwidth.

4 Results

We measure pre-training cost in training time (days)
and follow the recommendations of Dehghani et al.
(2022) to contextualize our results with respect to
hardware and training settings. That said, some
settings are entirely infeasible, e.g. due to exces-
sive system or GPU memory consumption, even
at batch size 1. We report optimal training times
from our empirical approach for all models and
GPUs in Table 1. We show naive training times
and deaggregated results (e.g. for all models and
GPU counts) in Appendix G.

We first consider the results of our naive empir-
ical baseline for Pythia models. We find that the
analytic inferences from Fig. 2 are overly optimistic
by a factor of 6×, underscoring the importance of
empirical benchmarks for realistic estimates. More-
over, in Fig. 3, we can see that 9 of the 20 model–
GPU configurations are entirely infeasible. As a
reference point, we find that it would take 41 days
to train Pythia-1B from scratch on 4 A100 GPUs
(Appendix G)—notably higher than the compute
budget (i.e. days or weeks) that is afforded by
academic researchers (Sec. 2).

By finding an optimal training configuration
(with the efficient methods in Sec. 3.2.1), we see

5



Analytic Naive Optimized
0x

1x

2x

3x

4x

5x

6x

7x

6.00

1.00

4.30

Relative Training Speed

Figure 2: Comparing the average speedup of our opti-
mized training settings over the naive empirical baseline.
Results are shown for Pythia models where naive set-
ting is feasible. Analytic method included for reference.
Error bars indicate confidence intervals.

160M 410M 1B 2.8B 6.9B
Model Size

RTX 3090

A6000

A100

H100

Naive Optimized
Feasibility of Empirical Training Methods

Figure 3: Indicating which GPU–model combinations
the naive and optimized settings are feasible in. For
Pythia models and where >1 GPU is in use.

4.3× average training time speedups compared to
the naive baseline (Fig. 2). Now, our 4 A100 x
Pythia-1B example only requires 18 days (Table 1)
instead of 41, which falls within the means (i.e.
weeks) of our better-resourced survey respondents.
With >1 GPU, all 20 model–GPU combinations
become feasible using optimal methods (Fig. 3).

In Fig. 4, we can see that the optimal combi-
nation of memory-saving methods often results in
training time gains over using free-lunch methods
alone (even up to 71%), especially for GPUs with
less memory (e.g. RTX 3090) or for larger mod-
els. This is surprising—because memory-saving
methods are advertised to strictly reduce training
speeds—but occurs because the saved memory can
sometimes be repurposed for larger batch sizes,
inducing higher throughput. That said: when us-
ing only 1 GPU (when model sharding is a no-
op), all memory-saving methods are detrimental to
throughput for Pythia models, so these are likely
particularly advantageous when free-lunch meth-
ods alone are infeasible.
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H100

47% 48%

16% 29% 7%

4% 4% 2% 21%

−9% 4% 11% 27%

160M 410M 1B 2.8B
Model Size (Pythia)

RTX 3090

A6000

A100

H100

Speedups from Optimal
Memory-Saving Methods

Figure 4: Average training speedups for Pythia models
by using optimal memory-saving methods, in addition
to free-lunch methods alone. Higher is better. By num-
ber of GPUs (top) and model size for >1 GPU (bottom).
Gray indicates infeasibility with free-lunch methods
alone. Only comparing settings where free-lunch meth-
ods are feasible. We can see that using the optimal
memory-saving methods from our search space can of-
fer up to 71% reduction in training time (compared to
using no memory-saving methods) in some settings.

We observe the importance of benchmarking
all combinations of memory-saving methods in
Fig. 5: on average, the optimal discovered con-
figuration is 2.3x faster than the median and 4.7x
faster than the worst-case configurations. So, with
an un-informed, arbitrary configuration, we might
expect training to take twice as long! The me-
dian case is also 1.7x slower than using free-lunch
methods alone, so there are rather few combina-
tions that indeed result in gains and not significant
degradations. In all, we find that this exhaustive
search is relatively inexpensive (e.g. a few hours
per model–GPU setting) compared to the prospec-
tive additional costs to training time (e.g. many
days) by picking an arbitrary configuration.

In Fig. 6, we compare the total compute needed
to originally pre-train these models with that for
our optimal settings on 8 A100 GPUs. We find
that our setting consumes 3.0× less compute on
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Figure 5: Comparing average training speedups among
combinations of memory-saving methods for Pythia
models in the >1 GPU case. “Free Lunch” as reference
where no memory-saving methods are enabled. Higher
is better. Only comparing settings where free-lunch
methods are feasible. Error bars indicate confidence
intervals. As in Fig. 4, we show gains from using the
optimal memory-saving method over no memory-saving
methods (Free Lunch). Here, we also show degradations
from the median selection of methods, which we would
expect if randomly choosing methods.

average (in GPU–days with “Data Center” GPUs).

4.1 Cost–benefit analysis

In Fig. 7, we consider the time to train the Pythia-
1B model on our different GPU configurations. We
compare overall hardware costs and single experi-
ment costs (i.e. the training time-normalized cost,
conservatively assuming a five-year hardware lifes-
pan). For example, if our budget is $40k, we might
opt to purchase a machine with 8 RTX 3090 GPUs,
which can train Pythia-1B in 30 days (i.e. the least
amount of time among hardware in our budget).
If we have a more competitive budget: it would
surprisingly be more cost-effective to buy 4 H100
GPUs ($130k) than 8 A100 GPUs ($160k)—even
with half the memory—as both train this model in
8–9 days. We can see this trend between A100 and
H100 GPUs when comparing costs per experiment:
a training run will cost $800 if using A100s, but
$600 if using H100s. That said, each H100 ($30k)
plainly costs more than an A100 GPU ($19k). If
our budget knows no bounds, a machine with 8
H100 GPUs ($250k) would be ideal, as it can train
Pythia-1B faster than all other configurations: in a
mere 4 days.

We perform this analysis using current hardware
quotes at the time of writing and provide a break-
down in Appendix H. We assume a price for each
GPU ($1,300 per RTX 3090; $4,800 per A6000;
$19k per A100; $30k per H100). We additionally

Model Size GPUs Type Days

Pythia

160M 32

A100 (40 GB)

1
410M 32 3

1B 64 3
2.8B 64 9
6.9B 128 10

RoBERTa 350M 1024 V100 (32 GB) 1
Mamba 2.8B ? A100 (80 GB) ?

ConvNeXt 350M 128 V100 (32 GB) 3
ViT 310M 8 TPUv3-core 30

(a)

160M 410M 1B 2.8B 6.9B RoBERTa ConvNeXt ViT
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ Pythia ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
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Figure 6: (a) Resources used to train original models
(inferred from the respective papers or Github reposito-
ries). (b) Compute (GPU–days) used to originally train
models vs. with our discovered optimizations on current
hardware (8 x 80 GB A100 GPUs). Lower is better.

consider system costs (varying by the number of
GPUs a machine can support). For example, a
$1,000 consumer/desktop machine can run any sin-
gle GPU listed above. A desktop that supports 2
GPUs (with more compute/memory and a larger
power supply) will cost $1,500. However, 4 GPUs
and 8 GPUs need substantially more resources
than what a consumer desktop provides: we must
instead use GPU servers (respectively priced at
$7,500 and $10,500).

5 Related Work

Compute surveys. Lee et al. (2023) surveys the
NLP community (including both academia and
industry) and investigates respondents’ access to
compute resources and downstream effects on the
environment and the reviewing process. To the best
of our knowledge, this is the only prior work to
conduct a compute survey in AI or GPU-centric
domains. In contrast, we survey the broader AI
community and specifically focus on academic ac-
cess to compute. Our compute survey not only
asks how many GPUs are available, but also which
type and for how long may they be used at a time—
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Figure 7: Hardware cost vs. pre-training time for Pythia-
1B. Overall cost (top); experiment-normalized cost (bot-
tom). We truncate a few outliers for clarity here and
show the expanded plots with log scale in Appendix I.

distinctions that influence the scope of possible
experiments.

Training recommendations. To improve train-
ing speed, the conventional wisdom (Face, 2024;
Godbole et al., 2023; Bekman, 2023–2024) is to
tune-by-hand using specialized knowledge to se-
lect efficiency methods. Our codebase abstracts
away these details: we help find efficient settings
as long as the end-user can define their model (in-
cluding hyper-parameters, inputs, and objectives).
We propose an automatic search to do so.

Concurrent work (Hagemann et al., 2024) sim-
ilarly searches among efficiency methods, but tar-
gets the large model, many GPU regime and is
specific to the LLAMA architecture. Deepspeed
Autotune (Rasley et al., 2020) is another automatic
search method that focuses specifically on batch
size, Zero-based model sharding, and Zero-specific
settings. Both works report metrics, such as model
FLOPs utilization (Chowdhery et al., 2023) and
throughput, which can be used for comparing meth-
ods, but are not as practical as training time.

Efficient pre-training recipes. Several works
propose “recipes” to pre-train certain models in
a short time on few GPUs. Izsak et al. (2021);
Geiping and Goldstein (2023); Portes et al. (2023);

Sanyal et al. (2024) pre-train BERT variants for
between 1 hour and 1 day on 1–8 GPUs. However,
these works achieve their speedups by: making
large architectural modifications, altering the train-
ing objective, reducing precision, changing the op-
timizer and hyper-parameters, and so forth. These
works do not replicate BERT, but actually pre-train
variants to sufficient performances. Nawrot (2023)
pre-trains T5-Base in 1 day on 1 A100 GPU with
similar changes, but without modifying the model
architecture and with a larger emphasis on effi-
ciency methods, such as those in Sec. 3.2. Sehwag
et al. (2024) trains a diffusion transformer in 3 days
on 8 H100 GPUs by proposing new data masking
strategies and using additional synthetic data.

Unlike these works, our paper indeed assumes
replication settings: we make no modifications that
affect a known model or its training recipe. Thus,
our approach is entirely model-agnostic and can
be flexibly extended to any deep learning model.
The problem of finding good model architectures
and training recipes (e.g. via hyper-parameter
search) is orthogonal to conducting the controlled
pre-training studies this paper aims to enable.

Hardware recommendations. Dettmers (2018,
2023) offers extensive details on purchasing and
using hardware for deep learning. On the other
hand, our paper gives simplified recommendations,
but emphasizes comparing hardware by training
time (rather than by throughput).

6 Conclusion

The gulf between industry and academic compute
has been clear for some time and is growing. There
even appears to be an expertise gap related to larger-
scale training. And so, it is unsurprising that few
academic researchers train models from scratch.

In this paper, we provide insights into the cur-
rent state of academic compute and the feasibility
of pre-training on this hardware. We show that,
in some cases, it is indeed possible for motivated
academic groups to train models with billions of
parameters. Our codebase and benchmark can be
easily used to determine ideal settings for training
models on one’s hardware. Our benchmark can
be run on short allocations of cloud compute be-
fore one makes large investments in hardware. We
hope to help the academic community begin train-
ing larger models on more data, so that they can
be more closely involved in the science of building
new deep learning models.
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Reproducibility

We make our code fully available so that all of our
experiments can be exactly replicated (within the
error bounds of hardware and trial variance). We
provide a complete, versioned list of our depen-
dencies, such that our software environment can
be reproduced exactly. We provide anonymized
survey results and all results from our experiments
such that further analyses may be conducted.

Limitations

Although our codebase supports the multi-node set-
ting, we only conduct single-node experiments (as
this is the most common academic setup). Our
codebase is an abstraction over prominent deep
learning libraries, especially: PyTorch (Paszke
et al., 2019), Hugging Face Transformers (Wolf
et al., 2020), and Deepspeed (Rasley et al., 2020).
The specific combination of model–hardware–
efficiency settings can be complex. We defer all
setting-specific training failures (e.g. compilation
or sharding failures for a certain model on a cer-
tain GPU; or other abnormal behaviors) to their
respective upstream libraries. Certain efficiency
methods can only be used on (somewhat) recent
hardware (Appendix F). Actual training runs may
see additional overhead from the training loop. Fi-
nally, perfectly replicating a model is hard—very
few works [e.g. (Biderman et al., 2023; Groen-
eveld et al., 2024)] fully open-source their data and
models—so we defer replication failures to original
works.
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A Academic Compute Survey

Q1. What is the name of your institution?
Q2. What is your role? Answer: Undergraduate Student, Master’s Student, Ph.D. Student, Postdoc, Professor, [Other]
Q3. How would you categorize your research area(s)? Answers: Machine Learning, Deep Learning, Natural Language
Processing, Computer Vision, Reinforcement Learning, [Other]

Q4. What do you use GPUs for? Answers: Training (with small data / models), Pre-training (with large data / models),
Fine-tuning, Inference, Model Analysis, Rendering, [Other]
Q5. How satisfied are you by your current access to GPUs? (1–5)
Answer: (1) “I cannot run most experiments that I wish to” (2) “I can run some experiments, but often experience difficulties
(e.g. long wait times)” (3) “I can run many but not all experiments that I wish to” (4) “I face some difficulties (e.g. long wait
times) with my most expensive experiments” (5) “I have no trouble running any experiments”
Q6. What is your monthly budget (in USD) for cloud compute (e.g. AWS, GCP, etc)?

Q7. Which Desktop GPUs are you able to use at your university’s compute cluster?
Answers: Not sure, None available, Pascal (GTX 1000 series / Titan X Pascal / Titan Xp), Volta (Titan V), Turing (GTX 1600
series / RTX 2000 series / Titan RTX), Ampere (RTX 3000 series), Lovelace (RTX 4000 series), [AMD] Radeon VII, [AMD]
Radeon RX 7900 XT / XTX, [Other]
Q8. What is the largest memory Desktop GPU typically available to you?
Answer: Not sure, None available, 4 GB, 8 GB, 12 GB, 16 GB, 20 GB, 24 GB, 32 GB
Q9. How long can you use these Desktop GPUs for? On an individual or per-project basis. Select 1 option per row.
Answers (Rows): 1 GPU, 2 GPUs, 4 GPUs, 8 GPUs, 16 GPUs, 32 GPUs, 64+ GPUs
Answers (Columns): N/A, Hours, Days, Weeks, Months, Indefinitely

Q10. Which Workstation GPUs are you able to use at your university’s compute cluster?
Answers: Not sure, None available, Turing (Quadro RTX series), Ampere (RTX A2000 / A4000 / ... / A6000), Lovelace (RTX
4000 Ada / 5000 Ada / ... / 6000 Ada), [AMD] Radeon PRO VII, [AMD] Radeon PRO W6800, [AMD] Radeon PRO W7800 /
W7900, [Other]
Q11. What is the largest memory Workstation GPU typically available to you?
Answer: Not sure, None available, 16 GB, 24 GB, 32 GB, 48 GB
Q12. How long can you use these Workstation GPUs for? On an individual or per-project basis. Select 1 option per row.
Answers (Rows): 1 GPU, 2 GPUs, 4 GPUs, 8 GPUs, 16 GPUs, 32 GPUs, 64+ GPUs
Answers (Columns): N/A, Hours, Days, Weeks, Months, Indefinitely

Q13. Which Data Center GPUs are you able to use at your university’s compute cluster?
Answers: Not sure, None available, Pascal (P4 / P40 / P100), Volta (V100), Turing (T4), Ampere (A2 / A10 / A30 / A40 / A100),
Lovelace (L4 / L40), Hopper (H100 / H200 / GH200), [AMD] Radeon PRO V620, [AMD] Instinct MI, [Other]
Q14. What is the largest memory Data Center GPU typically available to you?
Answer: Not sure, None available, 16 GB, 24 GB, 32 GB, 48 GB, 64 GB, 80 GB
Q15. How long can you use these Data Center GPUs for? On an individual or per-project basis. Select 1 option per row.
Answers (Rows): 1 GPU, 2 GPUs, 4 GPUs, 8 GPUs, 16 GPUs, 32 GPUs, 64+ GPUs
Answers (Columns): N/A, Hours, Days, Weeks, Months, Indefinitely

Q16. Does your system have any GPU-to-GPU connections?
Answers: No, Not sure, NVLink, NVSwitch, AMD Infinity Fabric
Q17. What kind of (inter-machine) networking connections do you have?
Answers: Not sure, No multi-node support, Multi-node supported (but connectivity is unknown), Ethernet (throughput unknown),
Ethernet (1 Gbps), Ethernet (10 Gbps), Ethernet (25 Gbps), Ethernet (40/50 Gbps), Ethernet (100 Gbps), Ethernet (200 Gbps),
Ethernet (400 Gbps), Infiniband (throughput unknown), Infiniband QDR (32 Gbps), Infiniband FDR (54 Gbps), Infiniband EDR
(100 Gbps), Infiniband HDR (200 Gbps), Infiniband NDR (400 Gbps)
Q18. What is the largest model you have pre-trained from scratch (if any)?
Q19. Would you like to provide any other details regarding your current access to compute?

Table 2: Questions in our academic compute survey. “Answer” entails single choice and “Answers” entails multiple
choices. Remaining questions (and “[Other]” choice) are fill-in-the-blank.
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Figure 8: Results from our survey. We also find that 70% of respondents have inter-GPU connections (e.g. NVLink).
33% of respondents reported having Ethernet and 24% reported having Infiniband inter-node connections.
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B Software and Hardware Specifications

Our codebase is written in Python and primarily uses PyTorch (Paszke et al., 2019) and HuggingFace
Transformers (Wolf et al., 2020). In each of our benchmarks, we allocate 4 CPU cores and 64 GB of
system memory for each allocated GPU. We assume that training data will be pre-processed and cached
ahead-of-time, ensuring that the training process is GPU-bound (i.e. negligibly bound by data loading
from disk, rather than by on-the-fly data pre-processing on CPUs).

Our cluster is managed with SLURM. All nodes have 8 GPUs and are connected via Infiniband
(200–400 Gb/s).

1. Each node with 8 x 24GB RTX 3090 GPUs has 64 CPUs with 1TB system memory.

2. Each node with 8 x 48GB A6000 GPUs has 64 CPUs with 1TB system memory. Pairs of GPUs are
connected with NVLink.

3. Each node with 8 x 80GB A100 GPUs (SXM) has 128 CPUs with 1TB system memory. GPUs are
fully-connected with NVSwitch.

4. Each node with 8 x 80GB H100 GPUs (SXM) has 112 CPUs with 2TB system memory. GPUs are
fully-connected with NVSwitch.

C Model Hyper-parameters for Replication

Model Params. Seq. Len. / Vocab. Size Image Size / Classes Batch Size Training Steps Mixed Precision Optimizer

Pythia

160M

2049 / 50K

—

1024 143K

fp16

Adam
410M — fp16
1.0B — bf16
2.8B — fp16
6.9B — fp16

RoBERTa 360M 512 / 50K — 8192 500K fp16 Adam
Mamba 2.8B 4096 / 50K — 128 572K bf16 AdamW
ConvNeXt 390M — 224 / 22K 4096 312K N/A AdamW
ViT 330M 256 / — 224 / 22K 4096 312K N/A Adam

Table 3: Model & training hyper-parameters from original reports. We use and list further hyper-parameters
(e.g. learning rate & scheduler)—which are necessary for replication, but don’t affect our measurements—in our
codebase.

D Additional Design Decisions

Choice of software. We run experiments in Python and PyTorch on GPUs (the most prevalent compute
stack in the academic AI research community). We rely on a training API (i.e. the Trainer from
Transformers—which already supports many features and receives active maintenance), rather than
writing a custom training loop, for future-proofing. We choose the Transformers library [over alternatives,
like MosaicML Composer (The Mosaic ML Team, 2021) and PyTorch Lightning (Falcon and the PyTorch
Lightning team, 2019)], because it has native support for a very large library of models and (at this time)
has the most complete support for the efficient training methods in our investigation.

Other efficient training methods. Mixed precision training (Micikevicius et al., 2018) improves speed—
as GPUs compute 16-bit operations more quickly—with variable effects on memory consumption. This
method is rather common and we use the original model’s mixed precision setting for replication purposes.
Alternative optimizers reduce memory (Dettmers et al., 2021; Li et al., 2023; Shazeer and Stern, 2018;
Luo et al., 2023) or communication volume (Tang et al., 2021; Li et al., 2021). Low-rank (Lialin et al.,
2023), quantized (Micikevicius et al., 2022), and sparse (PyTorch, 2024) training can both reduce memory
and improve speed.

Tensor (Shazeer et al., 2018; Shoeybi et al., 2019), pipeline (Huang et al., 2018; Narayanan et al., 2019),
and 3D (Narayanan et al., 2021) parallelism are alternatives to the model sharding described in our paper,
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but require extensive, model-specific implementations. Dataset distillation (Wang et al., 2018) and model
weight averaging (Kaddour, 2022) can improve model convergence rates. Finally, Kaddour et al. (2023)
more closely tests several methods (not listed above) and finds that their performance gains vanish under
controlled compute budgets.

We exclude all such methods from our approach, as they may either change a model’s optimization
formula or require extensive model-specific implementations.

Other models. We don’t consider models with more than 7B parameters, because we find that Pythia-
6.9B already requires 30 days to train on the very best “academic” hardware (8 H100 GPUs). Finally,
other models may be similar (e.g. in size and architecture) to those we report, but may be trained on much
larger quantities of data, directly inflating the training time. For example, OLMo-1B (Groeneveld et al.,
2024) is trained on 10 times as many tokens as Pythia-1B.

E Model Compute & GPU Throughput

Model Training FLOPs

Pythia (160M) 2.9× 1020

Pythia (410M) 8.2× 1020

Pythia (1B) 1.9× 1021

Pythia (2.8B) 5.4× 1021

Pythia (6.9B) 1.3× 1022

RoBERTa 4.8× 1021

Mamba 8.7× 1020

ConvNeXt 1.4× 1021

ViT 4.7× 1020

(a)

GPU FLOPs/sec

RTX 3090 7.1× 1013

A6000 1.6× 1014

A100 3.1× 1014

H100 7.6× 1014

(b)

Figure 9: (a) Total training compute for models in our investigation. (b) 16-bit throughput specifications for GPUs
in our investigation. Should be multiplied by the total number of GPUs for total throughput.

F Optimization Methods and Search Space

Our memory-saving methods have several options:

1. Activation Checkpointing [True / False]

2. Model Sharding [stages 0–3 with Zero / FSDP]

3. Offloading [True / False]

Regarding sharding: Stage (0) indicates sharding is disabled. Stage (1) shards only optimizer states,
(2) shards optimizer states and gradients, (3) shards optimizer states, gradients, and parameter weights.
Deepspeed offers the Zero implementation (stages 1–3) and Pytorch offers the FSDP implementation
(stages 2–3).
These methods have additional constraints:

• Offloading is only allowed when sharding is enabled.

• Model sharding is a no-op when using 1 GPU, so we exclude configurations with sharding (and no
offloading) in that setting.

• Only optimizer states are offloaded if the sharding stage is (1) or (2); both optimizer states and
parameter weights are offloaded if the stage is (3).
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Altogether, these methods form a search space of 12 options (when using 1 GPU) and 22 options (when
using >1 GPU). Furthermore:

• TF32 mode is only available on Ampere and newer generation GPUs.

• At the time of experiments, the Mamba model does not support torch.compile and Roberta does
not have an available implementation for the Flash Attention custom kernel. torch.compile is not
compatible with Deepspeed and so we do not enable model compilation when sharding with Zero.

• Compilation only improves speed and does not reduce GPU memory consumption. It incurs an
up-front time cost (usually a few minutes) and re-compilation is necessary for every tested per-gpu
batch size. To save significant time in our benchmarks, we do not compile the model when finding
the maximum batch size — where compilation is irrelevant.

G Naive Training Times & Deaggregated Results

RTX 3090 (24 GB) A6000 (48 GB) A100 (80 GB) H100 (80 GB)
1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Pythia

160M 125 92 46 20 124 63 35 19 71 36 18 9 42 21 11 5
410M 430 431 226 69 421 213 150 64 232 117 59 30 137 69 35 18

1B — — — — 326 238 82 41 160 81 41 21 90 45 23 12
2.8B — — — — — — — — — — — — — — — —
6.9B — — — — — — — — — — — — — — — —

RoBERTa 350M 1560 1095 418 420 1375 1125 489 185 685 345 174 87 399 201 101 51
Mamba 2.8B — — — — — — — — — — — — — — — —

ConvNeXt 390M 240 196 60 30 233 166 68 30 236 119 60 31 — 49 25 13
ViT 325M 255 218 63 33 243 158 72 31 246 124 62 32 93 47 24 12

Table 4: Training times (in days) for model–GPU combinations using naive settings. “—” indicates infeasibility
with all efficient methods.

RTX 3090

A6000

A100

H100

RTX 3090

A6000

A100

H100

Pythia (160M) Pythia (410M) Pythia (1B) Pythia (2.8B) Pythia (6.9B) RoBERTa Mamba ConvNeXt ViT
Model Size

Naive Free Lunch Optimized
Feasibility of Empirical Training Methods

Figure 10: Extended visualization of feasible empirical training methods (showing all models, as well as free-lunch
only methods). We show 1 GPU setting (top) and the 2+ GPU setting (bottom). For certain highly-constrained
settings (e.g. Pythia-6.9B), we observe a gap between the 1 and 2+ GPU setting, where all combinations of memory-
saving methods are infeasible for the former. As in Fig. 3, there exists a feasible combination of memory-saving
methods for all models and we see a larger need for these methods with larger models and smaller GPUs.
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RTX 3090

A6000

A100

H100

RTX 3090

A6000

A100

H100

RTX 3090

A6000

A100

H100

RTX 3090

A6000

A100

H100

(160M) (410M) (1B) (2.8B) (6.9B) RoBERTa Mamba ConvNeXt ViT

−44% −30% −12% −77% −45%

−62% −32% −56% −3% −43% −52%

−65% −48% −60% −25% −4% −36% −74% −49%

−68% −48% −56% −14% 0% −33% −118% −51%

1 GPU

14% 49% 53% 19% 44%

9% 26% 9% 0% 22% −11%

−7% 3% 0% 17% −5% −5% −32% −10%

−10% 3% 7% 14% 2% −6% −41% −10%

2 GPUs

48% 32% 7% −2% −24%

17% 28% 20% 42% 4%

7% 3% 3% 22% −3% −5% −21% 1%

−2% 3% 13% 32% 4% −7% −37% −2%

4 GPUs

80% 62% 55% −19% 6%

23% 32% −7% 2% 71% −46%

13% 6% 25% −3% 0% −19% 1%

−14% 7% 11% 34% 3% 4% −22% −21%

8 GPUs

Speedups from Optimal Memory-Saving Methods

Figure 11: Training time speedups (or slowdowns if negative) for optimal memory-saving methods over using no
memory-saving methods (i.e. only free-lunch). Results are shown for our full set of models and deaggregated by
number of GPUs. Parenthesized sizes refer to Pythia models. Gray indicates infeasibility when using free-lunch
methods alone (and sometimes with all memory-saving methods). As in Fig. 4, we see consistent degradations
when using these methods in the 1 GPU setting (where model sharding is a no-op). Here, we can also see that these
methods don’t benefit the particular computer vision models selected in our investigation as strongly. These models
simply require less memory than Pythia (even at similar parameter sizes, due to other differences in hyper-parameters
e.g. in sequence length and batch size). Thus, they see fewer benefits from memory-saving methods.
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H Current Hardware Costs

We show quotes for different GPUs and machine builds (supporting different numbers of GPUs) here. We
provide reasonable estimates for general builds and leave room for exploitation (e.g. finding more optimal
prices for more specific sets of components). Our findings are a guide: we recommend end-users obtain
more recent quotes (and benchmark their own models) before making significant investments in hardware.

Cost Quote

RTX3090 $1,300 Resale sites (e.g. eBay)
A6000 $4,800 Online retailers (e.g. Newegg)
A100 $19,000 https://www.thinkmate.com/systems/servers/gpx
H100 $30,000 https://www.thinkmate.com/systems/servers/gpx

Table 5: Costs per GPU (quoted on September 21, 2024).

Part Detail Cost

1 GPU

CPU Intel Core i3-10300 $99.00
CPU Cooler Noctua NH-D15 $109.95
Motherboard MSI Z490-A PRO $329.00
Memory Corsair Vengeance LPX 64 GB $102.49
Storage Western Digital - 4 TB $139.99
Case NZXT H7 Flow (2022) $99.99
Power Supply Corsair RM1000x (2021) $139.99

Total $1,020.41

2 GPU

CPU Intel Core i7-11700K $247.93
CPU Cooler Noctua NH-D15 $109.95
Motherboard MSI Z490-A PRO $329.00
Memory Corsair Vengeance LPX 128 GB $252.52
Storage Western Digital - 4 TB $139.99
Case NZXT H7 Flow (2022) $99.99
Power Supply EVGA SuperNOVA 1600 G+ $276.91

Total $1,456.29

Table 6: Desktop costs (compatible with 1 or 2 GPUs). Quotes from consumer retailers, as of September 21, 2024.

Server Part Detail Cost

4 GPU

Barebone 1U GPU Server (Intel C621A Chipset)

$7,482.00
Processor 2 x Intel Xeon Silver 4310 (12-Core)
Memory 16 x 16GB DDR4
Power Supply 2 x 2200W 80 Plus Titanium
Hard Drive Western Digital - 4 TB

8 GPU

BareBone 2U GPU Server (Intel C621A Chipset)

$10,673.00
Processor 2 x Intel Xeon Silver 4314 (16-Core)
Memory 16 x 32GB DDR4
Power Supply 2 x 3200W 80 Plus Platinum
Hard Drive Western Digital - 4 TB

Table 7: Server costs (compatible with 4 or 8 GPUs). Quotes from https://www.thinkmate.com/system/gpx-x
n4-21s3-4gpu and https://www.thinkmate.com/system/gpx-xh8-22s3-8gpu on September 21, 2024.
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I Extended Cost–Benefit Results
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Figure 12: Comparing hardware by overall cost and training time, for all models. Y-axis is log-scale to clearly
capture outliers.
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Figure 13: Comparing hardware by experiment-normalized cost and training time, for all models. Y-axis is log
scale to clearly capture outliers.

J Optimal Training Settings
In this table, “MBS” refers to the batch size per GPU and “GAS” refers to the number of gradient
accumulation steps. Our effective batch size is # GPUs × MBS × GAS. This matches our desired value
for replication (Appendix C). Settings neglected from this table are infeasible using all methods.

Model GPU Type # GPUs Free Lunch Checkpointing Sharding Offloading MBS GAS

Pythia (160M) RTX 3090 1 ✓ ✗ — ✗ 8 128
Pythia (160M) RTX 3090 2 ✓ ✗ Zero (1) ✗ 8 64
Pythia (160M) RTX 3090 4 ✓ ✗ Zero (1) ✗ 8 32
Pythia (160M) RTX 3090 8 ✓ ✗ Zero (1) ✗ 8 16

Pythia (160M) A6000 1 ✓ ✗ — ✗ 16 64
Pythia (160M) A6000 2 ✓ ✗ Zero (1) ✗ 16 32
Pythia (160M) A6000 4 ✓ ✗ Zero (1) ✗ 32 8
Pythia (160M) A6000 8 ✓ ✗ Zero (1) ✗ 32 4

Pythia (160M) A100 1 ✓ ✗ — ✗ 32 32

Continued on next page
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Model GPU Type # GPUs Free Lunch Checkpointing Sharding Offloading MBS GAS

Pythia (160M) A100 2 ✓ ✗ — ✗ 32 16
Pythia (160M) A100 4 ✓ ✗ Zero (1) ✗ 32 8
Pythia (160M) A100 8 ✓ ✗ Zero (1) ✗ 32 4

Pythia (160M) H100 1 ✓ ✗ — ✗ 32 32
Pythia (160M) H100 2 ✓ ✗ — ✗ 32 16
Pythia (160M) H100 4 ✓ ✗ — ✗ 32 8
Pythia (160M) H100 8 ✓ ✗ — ✗ 32 4

Pythia (410M) RTX 3090 1 ✓ ✗ — ✗ 4 256
Pythia (410M) RTX 3090 2 ✓ ✗ Zero (1) ✗ 4 128
Pythia (410M) RTX 3090 4 ✓ ✗ Zero (1) ✗ 4 64
Pythia (410M) RTX 3090 8 ✓ ✗ Zero (1) ✗ 8 16

Pythia (410M) A6000 1 ✓ ✗ — ✗ 8 128
Pythia (410M) A6000 2 ✓ ✗ Zero (1) ✗ 16 32
Pythia (410M) A6000 4 ✓ ✗ Zero (1) ✗ 16 16
Pythia (410M) A6000 8 ✓ ✗ Zero (1) ✗ 16 8

Pythia (410M) A100 1 ✓ ✗ — ✗ 16 64
Pythia (410M) A100 2 ✓ ✗ Zero (1) ✗ 16 32
Pythia (410M) A100 4 ✓ ✗ Zero (1) ✗ 16 16
Pythia (410M) A100 8 ✓ ✗ Zero (1) ✗ 16 8

Pythia (410M) H100 1 ✓ ✗ — ✗ 16 64
Pythia (410M) H100 2 ✓ ✗ Zero (1) ✗ 16 32
Pythia (410M) H100 4 ✓ ✗ Zero (1) ✗ 16 16
Pythia (410M) H100 8 ✓ ✗ Zero (1) ✗ 16 8

Pythia (1B) RTX 3090 1 ✓ ✓ — ✗ 2 512
Pythia (1B) RTX 3090 2 ✓ ✗ Zero (1) ✗ 4 128
Pythia (1B) RTX 3090 4 ✓ ✓ Zero (1) ✗ 16 16
Pythia (1B) RTX 3090 8 ✓ ✗ Zero (1) ✗ 4 32

Pythia (1B) A6000 1 ✓ ✗ — ✗ 4 256
Pythia (1B) A6000 2 ✓ ✗ Zero (1) ✗ 8 64
Pythia (1B) A6000 4 ✓ ✗ Zero (1) ✗ 8 32
Pythia (1B) A6000 8 ✓ ✗ — ✗ 4 32

Pythia (1B) A100 1 ✓ ✗ — ✗ 8 128
Pythia (1B) A100 2 ✓ ✗ Zero (1) ✗ 16 32
Pythia (1B) A100 4 ✓ ✗ Zero (1) ✗ 16 16
Pythia (1B) A100 8 ✓ ✗ Zero (1) ✗ 16 8

Pythia (1B) H100 1 ✓ ✗ — ✗ 8 128
Pythia (1B) H100 2 ✓ ✗ Zero (1) ✗ 16 32
Pythia (1B) H100 4 ✓ ✗ Zero (1) ✗ 16 16
Pythia (1B) H100 8 ✓ ✗ Zero (1) ✗ 16 8

Pythia (2.8B) RTX 3090 1 ✓ ✓ Zero (1) ✓ 8 128
Pythia (2.8B) RTX 3090 2 ✓ ✓ Zero (3) ✓ 16 32
Pythia (2.8B) RTX 3090 4 ✓ ✓ Zero (3) ✓ 16 16
Pythia (2.8B) RTX 3090 8 ✓ ✗ Zero (1) ✗ 1 128

Pythia (2.8B) A6000 1 ✓ ✓ Zero (1) ✓ 32 32
Pythia (2.8B) A6000 2 ✓ ✗ Zero (1) ✗ 2 256
Pythia (2.8B) A6000 4 ✓ ✗ Zero (1) ✗ 4 64
Pythia (2.8B) A6000 8 ✓ ✗ Zero (1) ✗ 4 32

Pythia (2.8B) A100 1 ✓ ✗ — ✗ 2 512
Pythia (2.8B) A100 2 ✓ ✗ Zero (1) ✗ 8 64
Pythia (2.8B) A100 4 ✓ ✗ Zero (1) ✗ 8 32
Pythia (2.8B) A100 8 ✓ ✗ Zero (1) ✗ 8 16

Pythia (2.8B) H100 1 ✓ ✗ — ✗ 2 512
Pythia (2.8B) H100 2 ✓ ✗ Zero (1) ✗ 8 64
Pythia (2.8B) H100 4 ✓ ✗ Zero (1) ✗ 8 32
Pythia (2.8B) H100 8 ✓ ✗ Zero (1) ✗ 8 16

Pythia (6.9B) RTX 3090 2 ✓ ✗ FSDP (3) ✓ 1 512
Pythia (6.9B) RTX 3090 4 ✓ ✓ Zero (3) ✓ 8 32
Pythia (6.9B) RTX 3090 8 ✓ ✓ Zero (3) ✗ 4 32

Pythia (6.9B) A6000 2 ✓ ✓ Zero (1) ✓ 16 32
Pythia (6.9B) A6000 4 ✓ ✓ Zero (3) ✓ 32 8
Pythia (6.9B) A6000 8 ✓ ✓ Zero (1) ✗ 16 8

Pythia (6.9B) A100 2 ✓ ✓ Zero (2) ✓ 32 16
Pythia (6.9B) A100 4 ✓ ✗ Zero (1) ✗ 4 64
Pythia (6.9B) A100 8 ✓ ✗ Zero (1) ✗ 4 32

Pythia (6.9B) H100 2 ✓ ✓ FSDP (2) ✗ 4 128
Pythia (6.9B) H100 4 ✓ ✗ Zero (1) ✗ 4 64
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Model GPU Type # GPUs Free Lunch Checkpointing Sharding Offloading MBS GAS

Pythia (6.9B) H100 8 ✓ ✗ Zero (1) ✗ 4 32

RoBERTa RTX 3090 1 ✓ ✗ — ✗ 8 1024
RoBERTa RTX 3090 2 ✓ ✗ Zero (1) ✗ 16 256
RoBERTa RTX 3090 4 ✓ ✗ Zero (1) ✗ 16 128
RoBERTa RTX 3090 8 ✓ ✓ — ✗ 32 32

RoBERTa A6000 1 ✓ ✗ — ✗ 16 512
RoBERTa A6000 2 ✓ ✗ — ✗ 16 256
RoBERTa A6000 4 ✓ ✓ — ✗ 64 32
RoBERTa A6000 8 ✓ ✗ Zero (1) ✗ 32 32

RoBERTa A100 1 ✓ ✗ — ✗ 32 256
RoBERTa A100 2 ✓ ✗ — ✗ 32 128
RoBERTa A100 4 ✓ ✗ — ✗ 32 64
RoBERTa A100 8 ✓ ✗ — ✗ 32 32

RoBERTa H100 1 ✓ ✓ — ✗ 128 64
RoBERTa H100 2 ✓ ✓ — ✗ 128 32
RoBERTa H100 4 ✓ ✓ — ✗ 128 16
RoBERTa H100 8 ✓ ✓ — ✗ 128 8

Mamba RTX 3090 1 ✓ ✓ FSDP (2) ✓ 4 32
Mamba RTX 3090 2 ✓ ✓ FSDP (3) ✓ 4 16
Mamba RTX 3090 4 ✓ ✓ Zero (1) ✗ 1 32
Mamba RTX 3090 8 ✓ ✓ FSDP (2) ✗ 2 8

Mamba A6000 1 ✓ ✗ Zero (2) ✓ 2 64
Mamba A6000 2 ✓ ✗ Zero (1) ✗ 1 64
Mamba A6000 4 ✓ ✗ Zero (1) ✗ 2 16
Mamba A6000 8 ✓ ✗ Zero (1) ✗ 2 8

Mamba A100 1 ✓ ✗ — ✗ 1 128
Mamba A100 2 ✓ ✗ — ✗ 1 64
Mamba A100 4 ✓ ✗ — ✗ 1 32
Mamba A100 8 ✓ ✗ — ✗ 1 16

Mamba H100 1 ✓ ✗ — ✗ 1 128
Mamba H100 2 ✓ ✗ — ✗ 1 64
Mamba H100 4 ✓ ✗ — ✗ 1 32
Mamba H100 8 ✓ ✗ Zero (1) ✗ 4 4

ConvNeXt RTX 3090 1 ✓ ✗ — ✗ 32 128
ConvNeXt RTX 3090 2 ✓ ✗ Zero (1) ✗ 32 64
ConvNeXt RTX 3090 4 ✓ ✗ — ✗ 32 32
ConvNeXt RTX 3090 8 ✓ ✗ — ✗ 32 16

ConvNeXt A6000 1 ✓ ✗ — ✗ 64 64
ConvNeXt A6000 2 ✓ ✗ Zero (1) ✗ 64 32
ConvNeXt A6000 4 ✓ ✗ Zero (1) ✗ 64 16
ConvNeXt A6000 8 ✓ ✓ — ✗ 128 4

ConvNeXt A100 1 ✓ ✗ — ✗ 128 32
ConvNeXt A100 2 ✓ ✗ — ✗ 128 16
ConvNeXt A100 4 ✓ ✗ — ✗ 128 8
ConvNeXt A100 8 ✓ ✗ — ✗ 128 4

ConvNeXt H100 1 ✓ ✗ — ✗ 128 32
ConvNeXt H100 2 ✓ ✗ — ✗ 128 16
ConvNeXt H100 4 ✓ ✗ — ✗ 128 8
ConvNeXt H100 8 ✓ ✗ — ✗ 128 4

ViT RTX 3090 1 ✓ ✗ — ✗ 32 128
ViT RTX 3090 2 ✓ ✗ Zero (1) ✗ 32 64
ViT RTX 3090 4 ✓ ✗ — ✗ 32 32
ViT RTX 3090 8 ✓ ✗ Zero (1) ✗ 32 16

ViT A6000 1 ✓ ✗ — ✗ 128 32
ViT A6000 2 ✓ ✗ — ✗ 128 16
ViT A6000 4 ✓ ✗ Zero (1) ✗ 128 8
ViT A6000 8 ✓ ✗ — ✗ 128 4

ViT A100 1 ✓ ✗ — ✗ 128 32
ViT A100 2 ✓ ✗ — ✗ 128 16
ViT A100 4 ✓ ✗ Zero (1) ✗ 128 8
ViT A100 8 ✓ ✗ Zero (1) ✗ 128 4

ViT H100 1 ✓ ✗ — ✗ 128 32
ViT H100 2 ✓ ✗ — ✗ 128 16
ViT H100 4 ✓ ✗ — ✗ 128 8
ViT H100 8 ✓ ✗ — ✗ 128 4
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